skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Birth of a Hawaiian Fissure Eruption
Abstract Most basaltic explosive eruptions intensify abruptly, allowing little time to document processes at the start of eruption. One opportunity came with the initiation of activity from fissure 8 (F8) during the 2018 eruption on the lower East Rift Zone of Kīlauea, Hawaii. F8 erupted in four episodes. We recorded 28 min of high‐definition video during a 51‐min period, capturing the onset of the second episode on 5 May. From the videos, we were able to analyze the following in‐flight parameters: frequency and duration of explosions; ejecta heights; pyroclast exit velocities; in‐flight total mass and estimated mass eruption rates; and the in‐flight total grain size distributions. The videos record a transition from initial pulsating outgassing, via spaced, but increasingly rapid, discrete explosions, to quasisustained, unsteady fountaining. This transition accompanied waxing intensity (mass flux) of the F8 eruption. We infer that all activity was driven by a combination of the ascent of a coupled mixture of small bubbles and melt, and the buoyant rise of decoupled gas slugs and/or pockets. The balance between these two types of concurrent flow determined the exact form of the eruptive activity at any point in time, and changes to their relative contributions drove the transition we observed at early F8. Qualitative observations of other Hawaiian fountains at Kīlauea suggest that this physical model may apply more generally. This study demonstrates the value of in‐flight parameters derived from high‐resolution videos, which offer a rapid and highly time‐sensitive alternative to measurements based on sampling of deposits posteruption.  more » « less
Award ID(s):
1829188
PAR ID:
10450689
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
126
Issue:
1
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Songbirds meet the extreme metabolic demands of migration by burning both stored fat and protein. However, catabolizing these endogenous tissues for energy leads to organ atrophy, and reductions in gastrointestinal tissue can be as great as 50% of the pre-flight mass. Remarkably, during stopover refuelling birds quickly regain digestive mass and performance. Aminopep- tidase-N (APN) is a brush-border enzyme responsible for late-stage protein digestion and may critically assist tissue reconstruction during the stopover, thus compensating for reduced gut size. We hypothesized that birds recover- ing from a fast would differentially upregulate APN activity relative to disaccharidases to rapidly process and assimilate dietary protein into lean mass. We fasted 23 wild-caught migratory white-throated sparrows (Zonotrichia albicollis) for 48h to mimic mass reductions experienced during migratory flight and measured intestinal APN activity before the fast, immediately after the fast, and during recovery at 24 h and 48 h post- fast. Total fat mass, lean mass and basal metabolic rate were measured daily. We show that fasted birds maintain APN activity through the fast, despite a 30% reduction in intestine mass, but during refuelling, APN activity increases nearly twofold over pre-fasted individuals. This suggests that dynamically regulating APN may be necessary for rapid protein reconstruction during the stopover. 
    more » « less
  2. Abstract Maunaloa—the largest active volcano on Earth—erupted in 2022 after its longest known repose period (~38 years) and two decades of volcanic unrest. This eruptive hiatus at Maunaloa encompasses most of the ~35-year-long Puʻuʻōʻō eruption of neighboring Kīlauea, which ended in 2018 with a collapse of the summit caldera and an unusually voluminous (~1 km3) rift eruption. A long-term pattern of such anticorrelated eruptive behavior suggests that a magmatic connection exists between these volcanoes within the asthenospheric mantle source and melting region, the lithospheric mantle, and/or the volcanic edifice. The exact nature of this connection is enigmatic. In the past, the distinct compositions of lavas from Kīlauea and Maunaloa were thought to require completely separate magma pathways from the mantle source of each volcano to the surface. Here, we use a nearly 200-yr record of lava chemistry from both volcanoes to demonstrate that melt from a shared mantle source within the Hawaiian plume may be transported alternately to Kīlauea or Maunaloa on a timescale of decades. This process led to a correlated temporal variation in 206Pb/204Pb and 87Sr/86Sr at these volcanoes since the early 19th century with each becoming more active when it received melt from the shared source. Ratios of highly over moderately incompatible trace elements (e.g. Nb/Y) at Kīlauea reached a minimum from ~2000 to 2010, which coincides with an increase in seismicity and inflation at the summit of Maunaloa. Thereafter, a reversal in Nb/Y at Kīlauea signals a decline in the degree of mantle partial melting at this volcano and suggests that melt from the shared source is now being diverted from Kīlauea to Maunaloa for the first time since the early to mid-20th century. These observations link a mantle-related shift in melt generation and transport at Kīlauea to the awakening of Maunaloa in 2002 and its eruption in 2022. Monitoring of lava chemistry is a potential tool that may be used to forecast the behavior (e.g. eruption rate and frequency) of these adjacent volcanoes on a timescale of decades. A future increase in eruptive activity at Maunaloa is likely if the temporal increase in Nb/Y continues at Kīlauea. 
    more » « less
  3. The science of volcanology advances disproportionately during exceptionally large or well-observed eruptions. The 2018 eruption of Kīlauea Volcano (Hawai‘i) was its most impactful in centuries, involving an outpouring of more than one cubic kilometer of basalt, a magnitude 7 flank earthquake, and the volcano's largest summit collapse since at least the nineteenth century. Eruptive activity was documented in detail, yielding new insights into large caldera-rift eruptions; the geometry of a shallow magma storage-transport system and its interaction with rift zone tectonics; mechanisms of basaltic tephra-producing explosions; caldera collapse mechanics; and the dynamics of fissure eruptions and high-volume lava flows. Insights are broadly applicable to a range of volcanic systems and should reduce risk from future eruptions. Multidisciplinary collaboration will be required to fully leverage the diversity of monitoring data to address many of the most important outstanding questions. ▪ Unprecedented observations of a caldera collapse and coupled rift zone eruption yield new opportunities for advancing volcano science. ▪ Magma flow to a low-elevation rift zone vent triggered quasi-periodic step-like collapse of a summit caldera, which pressurized the magma system and sustained the eruption. ▪ Kīlauea's magmatic-tectonic system is tightly interconnected over tens of kilometers, with complex feedback mechanisms and interrelated hazards over widely varying time scales. ▪ The eruption revealed magma stored in diverse locations, volumes, and compositions, not only beneath the summit but also within the volcano's most active rift zone. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  4. Mildly explosive eruptions—the most frequent manifestations of subaerial explosive volcanism on Earth—broadly group into two styles: Strombolian and Hawaiian. The former is characterized by sequences of intermittent discrete explosions, and the latter by sustained pyroclastic fountaining. Explosive activity during the 2018 fissure eruption of Kīlauea volcano (Hawaiʻi) provided an exceptional opportunity to record a wide range of Strombolian and Hawaiian behavior. We used high-resolution videography and image processing to quantify the frequency, duration, and steadiness (as seen by fluctuation in maximum clast height) of Hawaiian fountains and Strombolian jets. Combining these data with the currently published understanding of two-phase flow (melt + bubbles), we propose that the diversity in eruptive styles is related to melt viscosity, changing mass flux, and the extent of mechanical coupling versus decoupling of the exsolving volatile phases from the host magma. In particular, we single out the effects of the contrasts in abundance of a sub-population of the largest (meter-scale) bubbles that emerge intermittently and independently through the magma in the vent.. The coexistence of these styles—at vents often only meters apart—is a clear indication that the diversity in eruptive behavior is modulated at depths of probably no more than 100 m and perhaps as shallow as tens of meters. 
    more » « less
  5. We use new geochemical, petrological, and rheological data to constrain the formation and emplacement of the highly compositionally unusual(andesitic basalt) Kīlauea 2018 Fissure 17 (F17) eruptive products. Despite the restricted spatial and temporal distribution, F17 samples are texturally and geochemically diverse. The western samples are enriched in SiO2 by up to 10 wt%, relative to their eastern equivalents; additionally, the western samples contain microcrystalline enclaves, absent from the homogenous eastern samples. The compositions erupted along F17 suggest interaction between the basaltic 2018 juvenile magma and a crystal mush at depth, likely a left-over from the nearby 1955 eruption. Magma mingling caused heating and local melting of remnant mush, leading to melt hybridization and volatile exsolution. Rapid water exsolution likely caused overpressurization of the reservoir underneath the western side of F17, leading to Strombolian explosions of viscous magma, in contrast to sustained Hawaiian fountaining on the eastern side. Remelting of remnant crystal mush and melt hybridization in open-conduit systems may hence be an effective mechanism in inducing volatile saturation. 
    more » « less