skip to main content


This content will become publicly available on May 30, 2025

Title: The 2018 Eruption of Kīlauea: Insights, Puzzles, and Opportunities for Volcano Science

The science of volcanology advances disproportionately during exceptionally large or well-observed eruptions. The 2018 eruption of Kīlauea Volcano (Hawai‘i) was its most impactful in centuries, involving an outpouring of more than one cubic kilometer of basalt, a magnitude 7 flank earthquake, and the volcano's largest summit collapse since at least the nineteenth century. Eruptive activity was documented in detail, yielding new insights into large caldera-rift eruptions; the geometry of a shallow magma storage-transport system and its interaction with rift zone tectonics; mechanisms of basaltic tephra-producing explosions; caldera collapse mechanics; and the dynamics of fissure eruptions and high-volume lava flows. Insights are broadly applicable to a range of volcanic systems and should reduce risk from future eruptions. Multidisciplinary collaboration will be required to fully leverage the diversity of monitoring data to address many of the most important outstanding questions. ▪ Unprecedented observations of a caldera collapse and coupled rift zone eruption yield new opportunities for advancing volcano science. ▪ Magma flow to a low-elevation rift zone vent triggered quasi-periodic step-like collapse of a summit caldera, which pressurized the magma system and sustained the eruption. ▪ Kīlauea's magmatic-tectonic system is tightly interconnected over tens of kilometers, with complex feedback mechanisms and interrelated hazards over widely varying time scales. ▪ The eruption revealed magma stored in diverse locations, volumes, and compositions, not only beneath the summit but also within the volcano's most active rift zone.

Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

 
more » « less
Award ID(s):
2020045
NSF-PAR ID:
10496524
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Annual Reviews
Date Published:
Journal Name:
Annual Review of Earth and Planetary Sciences
Volume:
52
Issue:
1
ISSN:
0084-6597
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The understanding of island arc volcanism and associated hazards requires study of the processes that drive such volcanism and how the volcanoes interact with their marine surroundings. What are the links and feedbacks between crustal tectonics, volcanic activity, and magma genesis? What are the dynamics and impacts of submarine explosive volcanism and caldera-forming eruptions? How do calderas collapse during explosive eruptions and then recover to enter new magmatic cycles? What are the reactions of marine ecosystems to volcanic eruptions? The Christiana-Santorini-Kolumbo (CSK) volcanic field on the Hellenic volcanic arc is a unique system for addressing these questions. It consists of three large volcanic centers (Christiana, Santorini, and Kolumbo), and a line of small submarine cones, founded on thinned continental crust in a 100 km long rift zone that cuts across the island arc. The marine rift basins around the CSK field, as well as the Santorini caldera, contain volcano-sedimentary fills up to several hundreds of meters thick, providing rich archives of CSK volcanic products, tectonic evolution, magma genesis and paleoenvironments accessible only by deep drilling backed up by seismic interpretations. We will drill four primary sites in the rift's basins and two additional primary sites inside the Santorini caldera. The expedition science has five main objectives, each with a leading testable hypothesis, and two secondary objectives. Deep ocean drilling will enable us to identify, characterize, and interpret depositional packages visible on seismic images, chemically correlate primary volcaniclastic layers in the rift fills with their source volcanoes, fill in the many gaps in the onshore volcanic records, provide a tight chronostratigraphic framework for rift tectonic and sedimentary histories, and sample deep subsurface microbial life. 
    more » « less
  2. Abstract

    Very‐long‐period (VLP) volcano seismicity often encodes subsurface magma movement, and thus provides insight into subsurface magma transport processes. We develop a fully automated signal processing workflow using wavelet transforms to detect and assess period, decay rate, and ground motions of resonant VLP signals. We then generate a VLP catalog over the 2008–2018 open‐vent summit eruption of Kīlauea Volcano containing thousands of events. Two types of magma resonance dominate our catalog: vertical sloshing of the open magma column in and out of the shallow magma reservoir, and lateral sloshing of magma in the lava lake. These events were triggered mainly from the surface and less commonly from depth. The VLP catalog is then combined with other geophysical datasets to characterize evolution of the shallow magma system. VLP ground motion patterns show both abrupt and gradual changes in shallow magma reservoir geometry. Variation in resonant periods and decay rates of both resonance types occurred on timescales from hours to years, indicating variation in magma density and viscosity that likely reflect unsteady shallow outgassing and convection. A lack of correlation between decay rates of the two dominant resonant modes suggests a decoupling between magma in the conduit and lava lake. Known intrusions and rift zone eruptions often represented change points for resonance characteristics and their relations with other datasets. This data synthesis over a 10‐year eruptive episode at Klauea Volcano demonstrates how VLP seismicity can sharpen insights into magma system evolution for use in monitoring and understanding eruptive processes.

     
    more » « less
  3. null (Ed.)
    The first eruption at Kīlauea’s summit in 25 years began on March 19, 2008, and persisted for 10 years. The onset of the eruption marked the first explosive activity at the summit since 1924, forming the new “Overlook crater” (as the 2008 summit eruption crater has been informally named) within the existing crater of Halemaʻumaʻu. The first year consisted of sporadic lava activity deep within the Overlook crater. Occasional small explosions deposited spatter and small wall-rock lithic pieces around the Halemaʻumaʻu rim. After a month-long pause at the end of 2008, deep sporadic lava lake activity returned in 2009. Continuous lava lake activity began in February 2010. The lake rose significantly in late 2010 and early 2011, before subsequently draining briefly in March 2011. This disruption of the summit eruption was triggered by eruptive activity on the East Rift Zone. Rising lake levels through 2012 established a more stable, larger lake in 2013, with continued enlargement over the subsequent 5 years. Lava reached the Overlook crater rim and overflowed on the Halemaʻumaʻu floor in brief episodes in 2015, 2016, and 2018, but the lake level was more commonly 20–60 meters below the rim during 2014–18. The lake was approximately 280×200 meters (~42,000 square meters) by early 2018 and formed one of the two largest lava lakes on Earth. A new eruption began in the lower East Rift Zone on May 3, 2018, causing magma to drain from the summit reservoir complex. The lava in Halemaʻumaʻu had drained below the crater floor by May 10, followed by collapse of the Overlook and Halemaʻumaʻu craters. The collapse region expanded as much of the broader summit caldera floor subsided incrementally during June and July. By early August 2018, the collapse sequence had ended, and the summit was quiet. The historic changes in May–August 2018 brought a dramatic end to the decade of sustained activity at Kīlauea’s summit. The unique accessibility of the 2008–18 lava lake provided new observations of lava lake behavior and open-vent basaltic outgassing. Data indicated that explosions were triggered by rockfalls from the crater walls, that the lake consisted of a low-density foamy lava, that cycles of gas pistoning were rooted at shallow depths in the lake, and that lake level fluctuations were closely tied to the pressure of the summit magma reservoir. Lava chemistry added further support for an efficient hydraulic connection between the summit and East Rift Zone. Notwithstanding the benefits to scientific understanding, the eruption presented a persistent hazard of volcanic air pollution (vog) that commonly extended far from Kīlauea’s summit. 
    more » « less
  4. Fault friction is central to understanding earthquakes, yet laboratory rock mechanics experiments are restricted to, at most, meter scale. Questions thus remain as to the applicability of measured frictional properties to faulting in situ. In particular, the slip-weakening distance d c strongly influences precursory slip during earthquake nucleation, but scales with fault roughness and is challenging to extrapolate to nature. The 2018 eruption of Kīlauea volcano, Hawaii, caused 62 repeatable collapse events in which the summit caldera dropped several meters, accompanied by M W 4.7 to 5.4 very long period (VLP) earthquakes. Collapses were exceptionally well recorded by global positioning system (GPS) and tilt instruments and represent unique natural kilometer-scale friction experiments. We model a piston collapsing into a magma reservoir. Pressure at the piston base and shear stress on its margin, governed by rate and state friction, balance its weight. Downward motion of the piston compresses the underlying magma, driving flow to the eruption. Monte Carlo estimation of unknowns validates laboratory friction parameters at the kilometer scale, including the magnitude of steady-state velocity weakening. The absence of accelerating precollapse deformation constrains d c to be ≤ 10 mm, potentially much less. These results support the use of laboratory friction laws and parameters for modeling earthquakes. We identify initial conditions and material and magma-system parameters that lead to episodic caldera collapse, revealing that small differences in eruptive vent elevation can lead to major differences in eruption volume and duration. Most historical basaltic caldera collapses were, at least partly, episodic, implying that the conditions for stick–slip derived here are commonly met in nature. 
    more » « less
  5. Abstract

    Mid‐ocean ridge eruptions, initiating or revitalizing hydrothermal discharge and disrupting seafloor ecosystems, occur regularly as a consequence of plate spreading. Evaluating their impact on long‐term hydrothermal discharge requires information on the scale and duration of any posteruption enhancement. Here we describe a unique hydrothermal plume time series of annual (or more frequent) observations at Axial Seamount vent fields from 1985 through 2017, missing only 7 years. Axial, a hot spot volcano astride the Juan de Fuca Ridge, experienced eruptions in 1998, 2011, and 2015. In 1998 and 2011 lava flooded the SE caldera and south rift zone, but in 2015 most lava was extruded in a series of flows extending ~20 km down the north rift zone. Response cruises occurred within 18 days (1998) to about 4 months, followed by regular posteruption observations. All 30 cruises measured plume rise height (a proxy for heat flux) and turbidity (indicative of chemical changes in vent discharge) at several vent sites, yielding an integrated view of vent field activity. Venting in the SE caldera area persisted throughout the time series, consistent with the imaged location of the shallowest portion of the melt‐rich magma reservoir. Eruptions produced substantial and diagnostic increases in plume rise and turbidity, and posteruption enhancements lasted 2–5 years, totaling ~10 years over the course of the time series. Estimates of the relative heat flux indicate a sixfold increase during eruption‐enhanced periods, implying that generalizations about mid‐ocean ridge hydrothermal fluxes may be underestimates if based on non–eruption‐enhanced hydrothermal activity alone.

     
    more » « less