skip to main content

Title: Mechanisms Responsible for Stratosphere‐to‐Troposphere Transport Around a Mesoscale Convective System Anvil

Recent observational studies have shown that stratospheric air rich in ozone (O3) is capable of being transported into the upper troposphere in association with tropopause‐penetrating convection (anvil wrapping). This finding challenges the current understanding of upper tropospheric sources of O3, which is traditionally thought to come from thunderstorm outflows where lightning‐generated nitrogen oxides facilitate O3formation. Since tropospheric O3is an important greenhouse gas and the frequency and strength of tropopause‐penetrating storms may change in a changing climate, it is important to understand the mechanisms driving this transport process so that it can be better represented in chemistry‐climate models. Simulations of a mesoscale convective system (MCS) around which this transport process was observed are performed using the Weather Research and Forecasting model coupled with Chemistry. The Weather Research and Forecasting model coupled with Chemistry model adequately simulates anvil wrapping of ozone‐rich air. Possible mechanisms that influence the transport, including small‐scale static and dynamic instabilities and MCS‐induced mesoscale circulations, are evaluated. Model results suggest that anvil wrapping is a two‐step transport process (1) compensating subsidence surrounding the MCS, which is driven by mass conservation as the MCS transports tropospheric air into the upper troposphere and lower stratosphere, followed by (2) differential advection beneath the core of the MCS upper‐tropospheric outflow jet which wraps high O3air around and under the MCS cloud anvil. Static and dynamic instabilities are not a leading contributor to this transport process. Continued fine‐scale modeling of these events is needed to fully represent the stratosphere‐to‐troposphere transport process.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tropopause‐overshooting convection transports air from the lower troposphere to the upper troposphere and lower stratosphere (UTLS) where the resulting chemistry and mixing of trace gases can modify the radiation budget. While recent work has examined output from model simulations as well as aircraft and satellite observations of the impacts of tropopause‐overshooting convection on UTLS composition, the range of potential impacts and their dependence on characteristics of storms and their environments is not known. Here, two 10‐day periods, one representative of springtime convection and one representative of summertime convection, were simulated with the Weather Research and Forecasting (WRF) model with Chemistry to examine the range of UTLS composition impacts from tropopause‐overshooting convection. Overall, springtime convection has a larger impact on UTLS composition than summertime convection, with a net effect of increasing water vapor (H2O) in the lower stratosphere and increasing ozone (O3) in the upper troposphere. Springtime convection frequently increases the domain average H2O mixing ratio in the lowermost stratosphere by over 20% while changes in stratospheric H2O from summertime convection are much lower (∼7%–11% increase), reflecting a dependence of the maximum possible H2O increase on UTLS temperature. Increases in upper troposphere O3mixing ratios span the range 8%–19% from springtime convection and are minimal from summertime convection. Changes in the composition of the UTLS from tropopause‐overshooting convection are largely dependent on the height and temperature of the tropopause, with the largest changes being in environments with relatively low tropopause heights between 11 and 13 km (typical of springtime environments in the United States).

    more » « less
  2. Abstract

    Deep convective transport of gaseous precursors to ozone (O3) and aerosols to the upper troposphere is affected by liquid phase and mixed‐phase scavenging, entrainment of free tropospheric air and aqueous chemistry. The contributions of these processes are examined using aircraft measurements obtained in storm inflow and outflow during the 2012 Deep Convective Clouds and Chemistry (DC3) experiment combined with high‐resolution (dx≤3 km) WRF‐Chem simulations of a severe storm, an air mass storm, and a mesoscale convective system (MCS). The simulation results for the MCS suggest that formaldehyde (CH2O) is not retained in ice when cloud water freezes, in agreement with previous studies of the severe storm. By analyzing WRF‐Chem trajectories, the effects of scavenging, entrainment, and aqueous chemistry on outflow mixing ratios of CH2O, methyl hydroperoxide (CH3OOH), and hydrogen peroxide (H2O2) are quantified. Liquid phase microphysical scavenging was the dominant process reducing CH2O and H2O2outflow mixing ratios in all three storms. Aqueous chemistry did not significantly affect outflow mixing ratios of all three species. In the severe storm and MCS, the higher than expected reductions in CH3OOH mixing ratios in the storm cores were primarily due to entrainment of low‐background CH3OOH. In the air mass storm, lower CH3OOH and H2O2scavenging efficiencies (SEs) than in the MCS were partly due to entrainment of higher background CH3OOH and H2O2. Overestimated rain and hail production in WRF‐Chem reduces the confidence in ice retention fraction values determined for the peroxides and CH2O.

    more » « less
  3. Abstract

    The steady response of the stratosphere to tropospheric thermal forcing via an SST perturbation is considered in two separate theoretical models. It is first shown that an SST anomaly imposes a geopotential anomaly at the tropopause. Solutions to the linearized quasigeostrophic potential vorticity equations are then used to show that the vertical length scale of a tropopause geopotential anomaly is initially shallow, but significantly increased by diabatic heating from radiative relaxation. This process is a quasi-balanced response of the stratosphere to tropospheric forcing. A previously developed, coupled troposphere–stratosphere model is then introduced and modified. Solutions under steady, zonally symmetric SST forcing in the linearβ-plane model show that the upward stratospheric penetration of the corresponding tropopause geopotential anomaly is controlled by two nondimensional parameters: 1) a dynamical aspect ratio and 2) a ratio between tropospheric and stratospheric drag. The meridional scale of the SST anomaly, radiative relaxation rate, and wave drag all significantly modulate these nondimensional parameters. Under Earthlike estimates of the nondimensional parameters, the theoretical model predicts stratospheric temperature anomalies 2–3 larger in magnitude than that in the boundary layer, approximately in line with observational data. Using reanalysis data, the spatial variability of temperature anomalies in the troposphere is shown to have remarkable coherence with that of the lower stratosphere, which further supports the existence of a quasi-balanced response of the stratosphere to SST forcing. These findings suggest that besides mechanical and radiative forcing, there is a third way the stratosphere can be forced—through the tropopause via tropospheric thermal forcing.

    Significance Statement

    Upward motion in the tropical stratosphere, the layer of atmosphere above where most weather occurs, is thought to be controlled by weather disturbances that propagate upward and dissipate in the stratosphere. The strength of this upward motion is important since it sets the global distribution of ozone. We formulate and use simple mathematical models to show the vertical motion in the stratosphere can also depend on the warming in the troposphere, the layer of atmosphere where humans live. We use the theory as an explanation for our observations of inverse correlations between the ocean temperature and the stratosphere temperature. These findings suggest that local stratospheric cooling may be coupled to local tropospheric warming.

    more » « less
  4. Abstract

    This study investigates changes in stratosphere‐troposphere exchange (STE) of air masses and ozone concentrations from 1960 to 2099 using multiple model simulations from Chemistry Climate Model Initiative (CCMI) under climate change scenario RCP6.0. We employ a lowermost stratosphere mass budget approach with dynamic isentropic surfaces fitted to the tropical tropopause as the upper boundary of lowermost stratosphere. The multi‐model mean (MMM) trends of air mass STEs are all small over all regions, which are within 0.3 (0.1) % decade−1for 1960–2000 (2000–2099). The MMM trends of ozone STE for 1960–2000 are 0.3%, −2.7%, 3.4%, −0.9%, and −2.7% decade−1over the Northern hemisphere (NH) extratropics, Southern hemisphere (SH) extratropics, tropics, extratropics, and globe, respectively. The corresponding ozone STE trends for 2000–2099 are 3.0%, 4.3%, 0.8%, 3.5%, and 4.7% decade−1. Changes in ozone STEs are dominated by ozone concentration changes, driven by climate‐induced changes and ozone‐depleting substance (ODS) changes. For 1960–2000, small changes in ozone STEs in the NH extratropics are due to a cancellation between effects of climate‐induced changes and ODS increases, while the ODS effect dominates in the SH extratropics, leading to a large ozone STE magnitude decrease. Increased ozone transport from tropical troposphere to stratosphere for 1960–2000 is due to increased tropospheric ozone. A decreased global ozone STE magnitude for 1960–2000 was largely caused by ODS‐induced ozone loss that is partly compensated by climate‐induced ozone changes. For 2000–2099, about two‐thirds of global ozone STE magnitude increases are caused by ozone increases in the extratropical lower stratosphere due to climate‐induced changes. The remaining one‐third is caused by ozone recovery due to the phaseout of ODS.

    more » « less
  5. Abstract

    Deep convection can transport surface moisture and pollution from the planetary boundary layer to the upper troposphere (UT) within a few minutes. The convective transport of precursors of both ozone and aerosols from the planetary boundary layer affects the concentrations of these constituents in the UT and can influence the Earth's radiation budget and climate. Some precursors of both ozone and aerosols are soluble and reactive in the aqueous phase. This study uses the Weather Research and Forecasting model coupled with Chemistry (WRF‐Chem) to simulate the wet scavenging of precursors of both ozone and aerosols including CH2O, CH3OOH, H2O2, and SO2in a supercell system observed on 29 May 2012, during the 2012 Deep Convective Clouds and Chemistry (DC3) field campaign at cloud‐parameterized resolution. The default WRF‐Chem simulations underestimate the mixing ratios of soluble ozone precursors in the UT because the dissolved soluble trace gases are not released when the droplets freeze. In order to improve the model simulation of cloud‐parameterized wet scavenging, we added ice retention factors for various species to the cloud‐parameterized wet scavenging module and adjusted the conversion rate of cloud water to rainwater at temperatures below freezing in the cloud parameterization as well as in the subgrid‐scale wet‐scavenging calculation. The introduction of these model modifications greatly improved the model simulation of less soluble species.

    more » « less