skip to main content


Title: Effects of Scavenging, Entrainment, and Aqueous Chemistry on Peroxides and Formaldehyde in Deep Convective Outflow Over the Central and Southeast United States
Abstract

Deep convective transport of gaseous precursors to ozone (O3) and aerosols to the upper troposphere is affected by liquid phase and mixed‐phase scavenging, entrainment of free tropospheric air and aqueous chemistry. The contributions of these processes are examined using aircraft measurements obtained in storm inflow and outflow during the 2012 Deep Convective Clouds and Chemistry (DC3) experiment combined with high‐resolution (dx≤3 km) WRF‐Chem simulations of a severe storm, an air mass storm, and a mesoscale convective system (MCS). The simulation results for the MCS suggest that formaldehyde (CH2O) is not retained in ice when cloud water freezes, in agreement with previous studies of the severe storm. By analyzing WRF‐Chem trajectories, the effects of scavenging, entrainment, and aqueous chemistry on outflow mixing ratios of CH2O, methyl hydroperoxide (CH3OOH), and hydrogen peroxide (H2O2) are quantified. Liquid phase microphysical scavenging was the dominant process reducing CH2O and H2O2outflow mixing ratios in all three storms. Aqueous chemistry did not significantly affect outflow mixing ratios of all three species. In the severe storm and MCS, the higher than expected reductions in CH3OOH mixing ratios in the storm cores were primarily due to entrainment of low‐background CH3OOH. In the air mass storm, lower CH3OOH and H2O2scavenging efficiencies (SEs) than in the MCS were partly due to entrainment of higher background CH3OOH and H2O2. Overestimated rain and hail production in WRF‐Chem reduces the confidence in ice retention fraction values determined for the peroxides and CH2O.

 
more » « less
NSF-PAR ID:
10374606
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
123
Issue:
14
ISSN:
2169-897X
Page Range / eLocation ID:
p. 7594-7614
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Deep convection can transport surface moisture and pollution from the planetary boundary layer to the upper troposphere (UT) within a few minutes. The convective transport of precursors of both ozone and aerosols from the planetary boundary layer affects the concentrations of these constituents in the UT and can influence the Earth's radiation budget and climate. Some precursors of both ozone and aerosols are soluble and reactive in the aqueous phase. This study uses the Weather Research and Forecasting model coupled with Chemistry (WRF‐Chem) to simulate the wet scavenging of precursors of both ozone and aerosols including CH2O, CH3OOH, H2O2, and SO2in a supercell system observed on 29 May 2012, during the 2012 Deep Convective Clouds and Chemistry (DC3) field campaign at cloud‐parameterized resolution. The default WRF‐Chem simulations underestimate the mixing ratios of soluble ozone precursors in the UT because the dissolved soluble trace gases are not released when the droplets freeze. In order to improve the model simulation of cloud‐parameterized wet scavenging, we added ice retention factors for various species to the cloud‐parameterized wet scavenging module and adjusted the conversion rate of cloud water to rainwater at temperatures below freezing in the cloud parameterization as well as in the subgrid‐scale wet‐scavenging calculation. The introduction of these model modifications greatly improved the model simulation of less soluble species.

     
    more » « less
  2. Abstract

    This study introduces a new chemistry option in the Weather Research and Forecasting model data assimilation (WRFDA) system, coupled with the WRF‐Chem model (Version 4.4.1), to incorporate aqueous chemistry (AQCHEM) in the assimilation of ground‐level chemical measurements. The new DA capability includes the integration of aqueous‐phase aerosols from the Regional Atmospheric Chemistry Mechanism (RACM) gas chemistry, the Modal Aerosol Dynamics Model for Europe (MADE) aerosol chemistry, and the Volatility Basis Set (VBS) for secondary organic aerosol production. The RACM‐MADE‐VBS‐AQCHEM scheme facilitates aerosol‐cloud‐precipitation interactions by activating aerosol particles in cloud water during the model simulation. With the goal of enhancing air quality forecasting in cloudy conditions, this new implementation is demonstrated in the weakly coupled three‐dimensional variational data assimilation (3D‐Var) system through regional air quality cycling over East Asia. Surface particulate matter (PM) concentrations and four gas species (SO2, NO2, O3, and CO) are assimilated every 6 hr for the month of March 2019. The results show that including aqueous‐phase aerosols in both the analysis and forecast can represent aerosol wet removal processes associated with cloud development and rainfall production. During a pollution event with high cloud cover, simulations without aerosols defined in cloud water exhibit significantly higher values for liquid water path, and surface PM10(PM2.5) concentrations are overestimated by a factor of 10 (3) when wet scavenging processes dominate. On the contrary, AQCHEM proves to be helpful in simulating the wet deposition of aerosols, accurately predicting the evolution of surface PM concentrations without such overestimation.

     
    more » « less
  3. Abstract

    Hydrogen peroxide (H2O2) and methyl hydroperoxide (MHP, CH3OOH) serve as HOx(OH and HO2radicals) reservoirs and therefore as useful tracers of HOxchemistry. Both hydroperoxides were measured during the 2016–2018 Atmospheric Tomography Mission as part of a global survey of the remote troposphere over the Pacific and Atlantic Ocean basins conducted using the NASA DC‐8 aircraft. To assess the relative contributions of chemical and physical processes to the global hydroperoxide budget and their impact on atmospheric oxidation potential, we compare the observations with two models, a diurnal steady‐state photochemical box model and the global chemical transport model Goddard Earth Observing System (GEOS)‐Chem. We find that the models systematically under‐predict H2O2by 5%–20% and over‐predict MHP by 40%–50% relative to measurements. In the marine boundary layer, over‐predictions of H2O2in a photochemical box model are used to estimate H2O2boundary‐layer mean deposition velocities of 1.0–1.32 cm s−1, depending on season; this process contributes to up to 5%–10% of HOxloss in this region. In the upper troposphere and lower stratosphere, MHP is under‐predicted and H2O2is over‐predicted by a factor of 2–3 on average. The differences between the observations and predictions are associated with recent convection: MHP is under‐estimated and H2O2is over‐estimated in air parcels that have experienced recent convective influence.

     
    more » « less
  4. Abstract

    Recent observational studies have shown that stratospheric air rich in ozone (O3) is capable of being transported into the upper troposphere in association with tropopause‐penetrating convection (anvil wrapping). This finding challenges the current understanding of upper tropospheric sources of O3, which is traditionally thought to come from thunderstorm outflows where lightning‐generated nitrogen oxides facilitate O3formation. Since tropospheric O3is an important greenhouse gas and the frequency and strength of tropopause‐penetrating storms may change in a changing climate, it is important to understand the mechanisms driving this transport process so that it can be better represented in chemistry‐climate models. Simulations of a mesoscale convective system (MCS) around which this transport process was observed are performed using the Weather Research and Forecasting model coupled with Chemistry. The Weather Research and Forecasting model coupled with Chemistry model adequately simulates anvil wrapping of ozone‐rich air. Possible mechanisms that influence the transport, including small‐scale static and dynamic instabilities and MCS‐induced mesoscale circulations, are evaluated. Model results suggest that anvil wrapping is a two‐step transport process (1) compensating subsidence surrounding the MCS, which is driven by mass conservation as the MCS transports tropospheric air into the upper troposphere and lower stratosphere, followed by (2) differential advection beneath the core of the MCS upper‐tropospheric outflow jet which wraps high O3air around and under the MCS cloud anvil. Static and dynamic instabilities are not a leading contributor to this transport process. Continued fine‐scale modeling of these events is needed to fully represent the stratosphere‐to‐troposphere transport process.

     
    more » « less
  5. Abstract

    Atmospheric hydroperoxides are a significant component of the atmosphere's oxidizing capacity. Two of the most abundant hydroperoxides, hydrogen peroxide (H2O2) and methyl hydroperoxide (MHP, CH3OOH), were measured in the remote atmosphere using chemical ionization mass spectrometry aboard the NASA DC‐8 aircraft during the Atmospheric Tomography Mission. These measurements present a seasonal investigation into the global distribution of these two hydroperoxides, with near pole‐to‐pole coverage across the Pacific and Atlantic Ocean basins and from the marine boundary layer to the upper troposphere and lower stratosphere. H2O2mixing ratios are highest between 2 and 4 km altitude in the equatorial region of the Atlantic Ocean basin, where they reach global maximums of 3.6–6.5 ppbv depending on season. MHP mixing ratios reach global maximums of 4.3–8.6 ppbv and are highest between 1 and 3 km altitude, but peak in different regions depending on season. A major factor contributing to the global H2O2distribution is the influence of biomass burning emissions in the Atlantic Ocean basin, encountered in all four seasons, where the highest H2O2mixing ratios were found to correlate strongly with increased mixing ratios of the biomass burning tracers hydrogen cyanide (HCN) and carbon monoxide (CO). This biomass burning enhanced H2O2by a factor of 1.3–2.2, on average, in the Atlantic compared with the Pacific Ocean basin.

     
    more » « less