The asymmetric increase in average nighttime temperatures relative to increase in average daytime temperatures due to climate change is decreasing grain yield and quality in rice. Therefore, a better genome-level understanding of the impact of higher night temperature stress on the weight of individual grains is essential for future development of more resilient rice. We investigated the utility of metabolites obtained from grains to classify high night temperature (HNT) conditions of genotypes, and metabolites and single-nucleotide polymorphisms (SNPs) to predict grain length, width, and perimeter phenotypes using a rice diversity panel. We found that the metabolic profiles of rice genotypes alone could be used to classify control and HNT conditions with high accuracy using random forest or extreme gradient boosting. Best linear unbiased prediction and BayesC showed greater metabolic prediction performance than machine learning models for grain-size phenotypes. Metabolic prediction was most effective for grain width, resulting in the highest prediction performance. Genomic prediction performed better than metabolic prediction. Integrating metabolites and genomics simultaneously in a prediction model slightly improved prediction performance. We did not observe a difference in prediction between the control and HNT conditions. Several metabolites were identified as auxiliary phenotypes that could be used to enhance the multi-trait genomic prediction of grain-size phenotypes. Our results showed that, in addition to SNPs, metabolites collected from grains offer rich information to perform predictive analyses, including classification modeling of HNT responses and regression modeling of grain-size-related phenotypes in rice.
A higher minimum (night‐time) temperature is considered a greater limiting factor for reduced rice yield than a similar increase in maximum (daytime) temperature. While the physiological impact of high night temperature (HNT) has been studied, the genetic and molecular basis of HNT stress response remains unexplored. We examined the phenotypic variation for mature grain size (length and width) in a diverse set of rice accessions under HNT stress. Genome‐wide association analysis identified several HNT‐specific loci regulating grain size as well as loci that are common for optimal and HNT stress conditions. A novel locus contributing to grain width under HNT conditions colocalized with We present evidence to support the role of
- Award ID(s):
- 1736192
- PAR ID:
- 10450765
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 229
- Issue:
- 1
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- p. 335-350
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Heat stress occurring during rice (
Oryza sativa ) grain development reduces grain quality, which often manifests as increased grain chalkiness. Although the impact of heat stress on grain yield is well-studied, the genetic basis of rice grain quality under heat stress is less explored as quantifying grain quality is less tractable than grain yield. To address this, we used an image-based colorimetric assay (Red, R; and Green, G) for genome-wide association analysis to identify genetic loci underlying the phenotypic variation in rice grains exposed to heat stress. We found the R to G pixel ratio (RG) derived from mature grain images to be effective in distinguishing chalky grains from translucent grains derived from control (28/24°C) and heat stressed (36/32°C) plants. Our analysis yielded a novel gene, riceChalky Grain 5 (OsCG5 ) that regulates natural variation for grain chalkiness under heat stress.OsCG5 encodes a grain-specific, expressed protein of unknown function. Accessions with lower transcript abundance ofOsCG5 exhibit higher chalkiness, which correlates with higher RG values under stress. These findings are supported by increased chalkiness ofOsCG5 knock-out (KO) mutants relative to wildtype (WT) under heat stress. Grains from plants overexpressingOsCG5 are less chalky than KOs but comparable to WT under heat stress. Compared to WT and OE, KO mutants exhibit greater heat sensitivity for grain size and weight relative to controls. Collectively, these results show that the natural variation atOsCG5 may contribute towards rice grain quality under heat stress. -
Abstract Elevated nighttime temperatures resulting from climate change significantly impact the rice crop worldwide. The rice ( Oryza sativa L.) plant is highly sensitive to high nighttime temperature (HNT) during grain-filling (reproductive stage). HNT stress negatively affects grain quality traits and has a major impact on the value of the harvested rice crop. In addition, along with grain dimensions determining rice grain market classes, the grain appearance and quality traits determine the rice grain market value. During the last few years, there has been a major concern for rice growers and the rice industry over the prevalence of rice grains opacity and the reduction of grain dimensions affected by HNT stress. Hence, the improvement of heat-stress tolerance to maintain grain quality of the rice crop under HNT stress will bolster future rice value in the market. In this study, 185 F 12 - recombinant inbred lines (RILs) derived from two US rice cultivars, Cypress (HNT-tolerant) and LaGrue (HNT-sensitive) were screened for the grain quality traits grain length (GL), grain width (GW), and percent chalkiness (%chalk) under control and HNT stress conditions and evaluated to identify the genomic regions associated with the grain quality traits. In total, there were 15 QTLs identified; 6 QTLs represented under control condition explaining 3.33% to 8.27% of the phenotypic variation, with additive effects ranging from − 0.99 to 0.0267 on six chromosomes and 9 QTLs represented under HNT stress elucidating 6.39 to 51.53% of the phenotypic variation, with additive effects ranging from − 8.8 to 0.028 on nine chromosomes for GL, GW, and % chalk. These 15 QTLs were further characterized and scanned for natural genetic variation in a japonica diversity panel (JDP) to identify candidate genes for GL, GW, and %chalk. We found 6160 high impact single nucleotide polymorphisms (SNPs) characterized as such depending on their type, region, functional class, position, and proximity to the gene and/or gene features, and 149 differentially expressed genes (DEGs) in the 51 Mbp genomic region comprising of the 15 QTLs. Out of which, 11 potential candidate genes showed high impact SNP associations. Therefore, the analysis of the mapped QTLs and their genetic dissection in the US grown Japonica rice genotypes at genomic and transcriptomic levels provide deep insights into genetic variation beneficial to rice breeders and geneticists for understanding the mechanisms related to grain quality under heat stress in rice.more » « less
-
Abstract High night air temperature (HNT) stress negatively impacts both rice (
Oryza sativa L) yield and grain quality and has been extensively investigated because of the significant yield loss observed (10%) for every increase in air temperature (1°C). Most of the rice HNT studies have been conducted under greenhouse conditions, with limited information on field‐level responses for the major rice sub‐populations. This is due to a lack of a field‐based phenotyping infrastructure that can accommodate a diverse set of accessions representing the wider germplasm and impose growth stage‐specific stress. In this study, we built six high‐tunnel greenhouses and screened 310 rice accessions from the Rice Diversity Panel 1 (RDP1) and 10 commercial hybrid cultivars in a replicated design. Each greenhouse had heating and a cyber–physical system that sensed ambient air temperature and automatically increased night air temperature to about 4°C relative to ambient temperature in the field for two cropping seasons. The system successfully imposed HNT stress of 4.0 and 3.94°C as recorded by Raspberry Pi sensors for 2 weeks in 2019 and 2020, respectively. HOBO sensors (Onset Computer Corporation) recorded a 2.9 and 2.07°C temperature differential of ambient air between control and heated greenhouses in 2019 and 2020, respectively. These greenhouses were able to withstand constant flooding, heavy rains, strong winds (140 mph), and thunderstorms. Selected US rice cultivars showed an average of 24% and 15% yield reduction under HNT during the 2019 and 2020 cropping seasons, respectively. Our study highlights the potential of this computer‐based infrastructure for accurate implementation of HNT or other abiotic stresses under field‐growing conditions. -
Abstract Rapid increases in minimum night temperature than in maximum day temperature is predicted to continue, posing significant challenges to crop productivity. Rice and wheat are two major staples that are sensitive to high night‐temperature (HNT) stress. This review aims to (i) systematically compare the grain yield responses of rice and wheat exposed to HNT stress across scales, and (ii) understand the physiological and biochemical responses that affect grain yield and quality. To achieve this, we combined a synthesis of current literature on HNT effects on rice and wheat with information from a series of independent experiments we conducted across scales, using a common set of genetic materials to avoid confounding our findings with differences in genetic background. In addition, we explored HNT‐induced alterations in physiological mechanisms including carbon balance, source–sink metabolite changes and reactive oxygen species. Impacts of HNT on grain developmental dynamics focused on grain‐filling duration, post‐flowering senescence, changes in grain starch and protein composition, starch metabolism enzymes and chalk formation in rice grains are summarized. Finally, we highlight the need for high‐throughput field‐based phenotyping facilities for improved assessment of large‐diversity panels and mapping populations to aid breeding for increased resilience to HNT in crops.