Most ferns, unlike all seed plants, are homosporous and produce sexually undifferentiated spores. Sex ratio in many homosporous species is environmentally established by the secretion of antheridiogen from female/hermaphrodite gametophytes. Nearby undetermined gametophytes perceive antheridiogen, which induces male development. In the fern Ceratopteris richardii (Ceratopteris), hermaphroditic (her) mutants develop as hermaphrodites even in the presence of antheridiogen. Modern sequencing and genomic tools make the molecular identification of mutants in the 11-Gbp genome of this fern possible. We mapped 2 linked mutants, her7-14 and her7-19, to the same 16-Mbp interval on chromosome 29 of the Ceratopteris genome. An ortholog of the receptor kinase gene BRASSINOSTEROID INSENSITIVE 1 (BRI1) within this interval encoded a deletion mutation in her7-14 and a missense mutation in her7-19. Three other linked her mutants encoded missense mutations in the same gene, which we name HER7. Consistent with a function as a receptor kinase, HER7-GFP fusion protein localized to the plasma membrane and cytoplasm. Analysis of gene expression showed that brassinosteroid biosynthesis was upregulated in hermaphrodites compared with male gametophytes. Our work demonstrates that HER7 is required for sex determination in Ceratopteris and opens avenues for studying the evolution of antheridiogen systems.
more »
« less
Insights into the evolutionary history and widespread occurrence of antheridiogen systems in ferns
Summary Sex expression of homosporous ferns is controlled by multiple factors, one being the antheridiogen system. Antheridiogens are pheromones released by sexually mature female fern gametophytes, turning nearby asexual gametophytes precociously male. Nevertheless, not all species respond. It is still unknown how many fern species use antheridiogens, how the antheridiogen system evolved, and whether it is affected by polyploidy and/or apomixis.We tested the response of 68 fern species to antheridiogens in cultivation. These results were combined with a comprehensive review of literature to form the largest dataset of antheridiogen interactions to date. Analyzed species also were coded as apomictic or sexual and diploid or polyploid.Our final dataset contains a total of 498 interactions involving 208 species (c. 2% of all ferns). About 65% of studied species respond to antheridiogen. Multiple antheridiogen types were delimited and their evolution is discussed. Antheridiogen responsiveness was not significantly affected by apomixis or polyploidy.Antheridiogens are widely used by ferns to direct sex expression. The antheridiogen system likely evolved multiple times and provides homosporous ferns with the benefits often associated with heterospory, such as increased rates of outcrossing. Despite expectations, antheridiogens may be beneficial to polyploids and apomicts.
more »
« less
- Award ID(s):
- 1656801
- PAR ID:
- 10450831
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 229
- Issue:
- 1
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- p. 607-619
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract PremiseAntheridiogen systems are a set of pheromonal mechanisms that control sex expression in fern gametophytes. However, antheridiogen has rarely been studied outside of the laboratory, and little is known about its function in natural settings. Combining predictions based on field and laboratory study, we tested whether the sexual structure of gametophytic colonies of a tree fern were attributable to antheridiogen. MethodsGametophytic colonies of the antheridiogen‐producing tree fernCyathea multiflorawere collected at La Selva Biological Station in Costa Rica in January 2019. The sex of each gametophyte was determined, mapped, and spatial statistic approaches were used to examine the distribution of sex in each colony. ResultsIn all gametophytic colonies, males were most common, representing 62–68% of individuals. No hermaphroditic gametophytes were identified in any colony. A quadrat‐based method showed female gametophytes were not clustered in each colony, while male gametophytes were clustered. In two of the colonies, theK(r) test statistic for males was greater than expected compared to random simulations of sex expression, indicating male sex expression was spatially associated with females. ConclusionsThis study provides the first documentation of spatial sex expression in natural settings of gametophytes of an antheridiogen‐producing tree fern species. The profound impact of antheridiogen on gametophytic sex expression in field settings suggests this system is intimately tied to mating system, fitness, and genetic diversity inCyathea multiflora.more » « less
-
Most land plants alternate between generations of sexual gametophytes and asexual sporophytes. Unlike seed plants, fern gametophytes are free-living and grow independently of their sporophytes. In homosporous ferns like Ceratopteris, gametophytes derived from genetically identical spores exhibit sexual dimorphism, developing as either males or hermaphrodites. Males lack meristems and promote cell differentiation into sperm-producing antheridia. In contrast, hermaphrodites initiate multicellular meristems that stay undifferentiated, sustain cell division and prothallus expansion, and drive the formation of egg-producing archegonia. Once initiating the meristem, hermaphrodites secrete the pheromone antheridiogen, which triggers neighboring slower-growing gametophytes to develop as males, while the hermaphrodites themselves remain insensitive to antheridiogen. This strategy promotes outcrossing and prevents all individuals in the colony from becoming males. This study reveals that an evolutionarily conserved GRAS domain transcriptional regulator (CrHAM), directly repressed by Ceratopteris microRNA171 (CrmiR171), promotes meristem development in Ceratopteris gametophytes and determines the male-to-hermaphrodite ratio in the colony. CrHAM preferentially accumulates within the meristems of hermaphrodites but is excluded from differentiated antheridia. CrHAM sustains meristem proliferation and cell division through conserved hormone pathways. In the meantime, CrHAM inhibits the antheridiogen-induced conversion of hermaphrodites to males by suppressing the male program expression and preventing meristem cells from differentiating into sperm-producing antheridia. This finding establishes a connection between meristem indeterminacy and sex determination in ferns, suggesting both conserved and diversified roles of meristem regulators in land plants.more » « less
-
Summary Climate change is rapidly altering natural habitats and generating complex patterns of environmental stress. Ferns are major components of many forest understories and, given their independent gametophyte generation, may experience unique pressures in emerging temperature and drought regimes. Polyploidy is widespread in ferns and may provide a selective advantage in these rapidly changing environments. This work aimed to understand whether the gametophytes of allopolyploid ferns respond differently to climate‐related physiological stress than their diploid parents.The experimental approach involved a multifactorial design with 27 treatment combinations including exposure to multiple levels of drought and temperature over three treatment durations, with recovery measured at multiple timepoints. We measured Chl fluorescence from over 2000 gametophytes to evaluate stress avoidance and tolerance in diploid and polyploid species.Polyploids generally showed a greater ability to avoid and/or tolerate a range of stress conditions compared with their diploid counterparts, suggesting that polyploidy may confer enhanced flexibility and resilience under climate stress.Overall, these results suggest that polyploidy may provide some resilience to climate change in mixed ploidy populations. However, all species remain susceptible to the impacts of extreme drought and heat stress.more » « less
-
Summary The expansion of angiosperm‐dominated forests in the Cretaceous and early Cenozoic had a profound effect on terrestrial biota by creating novel ecological niches. The majority of modern fern lineages are hypothesized to have arisen in response to this expansion, particularly fern epiphytes that radiated into the canopy. Recent evidence, however, suggests that epiphytism does not correlate with increased diversification rates in ferns, calling into question the role of the canopy habitat in fern evolution.To understand the role of the canopy in structuring fern community diversity, we investigated functional traits of fern sporophytes and gametophytes across a broad phylogenetic sampling on the island of Moorea, French Polynesia, including > 120 species and representatives of multiple epiphytic radiations.While epiphytes showed convergence in small size and a higher frequency of noncordate gametophytes, they showed greater functional diversity at the community level relative to terrestrial ferns.These results suggest previously overlooked functional diversity among fern epiphytes, and raise the hypothesis that while the angiosperm canopy acted as a complex filter that restricted plant size, it also facilitated diversification into finely partitioned niches. Characterizing these niche axes and adaptations of epiphytic ferns occupying them should be a priority for future pteridological research.more » « less
An official website of the United States government
