skip to main content


Search for: All records

Award ID contains: 1656801

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Opportunistic diversification has allowed ferns to radiate into epiphytic niches in angiosperm dominated landscapes. However, our understanding of how ecophysiological function allowed establishment in the canopy and the potential transitionary role of the hemi‐epiphytic life form remain unclear. Here, we surveyed 39 fern species in Costa Rican tropical forests to explore epiphytic trait divergence in a phylogenetic context. We examined leaf responses to water deficits in terrestrial, hemi‐epiphytic and epiphytic ferns and related these findings to functional traits that regulate leaf water status. Epiphytic ferns had reduced xylem area (−63%), shorter stipe lengths (−56%), thicker laminae (+41%) and reduced stomatal density (−46%) compared to terrestrial ferns. Epiphytic ferns exhibited similar turgor loss points, higher osmotic potential at saturation and lower tissue capacitance after turgor loss than terrestrial ferns. Overall, hemi‐epiphytic ferns exhibited traits that share characteristics of both terrestrial and epiphytic species. Our findings clearly demonstrate the prevalence of water conservatism in both epiphytic and hemi‐epiphytic ferns, via selection for anatomical and structural traits that avoid leaf water stress. Even with likely evolutionarily constrained physiological function, adaptations for drought avoidance have allowed epiphytic ferns to successfully endure the stresses of the canopy habitat.

     
    more » « less
  2. Summary

    The expansion of angiosperm‐dominated forests in the Cretaceous and early Cenozoic had a profound effect on terrestrial biota by creating novel ecological niches. The majority of modern fern lineages are hypothesized to have arisen in response to this expansion, particularly fern epiphytes that radiated into the canopy. Recent evidence, however, suggests that epiphytism does not correlate with increased diversification rates in ferns, calling into question the role of the canopy habitat in fern evolution.

    To understand the role of the canopy in structuring fern community diversity, we investigated functional traits of fern sporophytes and gametophytes across a broad phylogenetic sampling on the island of Moorea, French Polynesia, including > 120 species and representatives of multiple epiphytic radiations.

    While epiphytes showed convergence in small size and a higher frequency of noncordate gametophytes, they showed greater functional diversity at the community level relative to terrestrial ferns.

    These results suggest previously overlooked functional diversity among fern epiphytes, and raise the hypothesis that while the angiosperm canopy acted as a complex filter that restricted plant size, it also facilitated diversification into finely partitioned niches. Characterizing these niche axes and adaptations of epiphytic ferns occupying them should be a priority for future pteridological research.

     
    more » « less
  3. Summary

    Sex expression of homosporous ferns is controlled by multiple factors, one being the antheridiogen system. Antheridiogens are pheromones released by sexually mature female fern gametophytes, turning nearby asexual gametophytes precociously male. Nevertheless, not all species respond. It is still unknown how many fern species use antheridiogens, how the antheridiogen system evolved, and whether it is affected by polyploidy and/or apomixis.

    We tested the response of 68 fern species to antheridiogens in cultivation. These results were combined with a comprehensive review of literature to form the largest dataset of antheridiogen interactions to date. Analyzed species also were coded as apomictic or sexual and diploid or polyploid.

    Our final dataset contains a total of 498 interactions involving 208 species (c. 2% of all ferns). About 65% of studied species respond to antheridiogen. Multiple antheridiogen types were delimited and their evolution is discussed. Antheridiogen responsiveness was not significantly affected by apomixis or polyploidy.

    Antheridiogens are widely used by ferns to direct sex expression. The antheridiogen system likely evolved multiple times and provides homosporous ferns with the benefits often associated with heterospory, such as increased rates of outcrossing. Despite expectations, antheridiogens may be beneficial to polyploids and apomicts.

     
    more » « less
  4. Abstract Background and Aims Through careful field examination of the growth habit of the gametophytes and sporophytes of Hymenasplenium volubile across an ontogenetic series, we aim to understand better the evolution of epiphytism in this poorly understood group of ferns Methods We made field observations of H. volubile sporophytes and gametophytes, and brought specimens back to the lab for microscopic analysis. In the field, sporophytes at each ontogenetic stage were photographed to document the species’ growth habit. We used an existing phylogeny to optimize growth form of New World Hymenasplenium. Key Results Young sporophytes were at first fully epiphytic and produced one or two long feeding roots that extend to the soil where they branch profusely. The feeding roots remain in contact with the soil throughout the life of the plant. Thus, H. volubile is a hemiepiphyte. While immature, gametophytes are appressed to the tree trunk, but, as their gametangia mature, their lower margin lifts upward, imparting a shelf-like appearance to the thallus. The thallus attaches to the substrate by branched rhizoids produced along the margin of the thallus in contact with the substrate. Conclusions Hemiepiphytes are a key link in the evolution of epiphytic ferns and may act as a bridge between the forest floor and the canopy. Our finding is the first report of hemiepiphytism in Aspleniaceae, a large lineage with many epiphytic and terrestrial taxa. This work serves as an important model to understand the evolution of epiphytism in this group specifically and in ferns in general. The majority of our understanding of fern gametophyte biology is derived from laboratory studies. Our efforts represent a fundamental contribution to understanding fern gametophyte ecology in a field setting. 
    more » « less