Abstract Delaware Bay is a large estuary with a deep, relatively narrow channel and wide, shallow banks, providing a clear example of a “channel‐shoal” estuary. This numerical modeling study addresses the exchange flow in this channel‐shoal estuary, specifically to examine how the lateral geometry affects the strength and mechanisms of exchange flow. We find that the exchange flow is exclusively confined to the channel region during spring tides, when stratification is weak, and it broadens laterally over the shoals during the more stratified neap tides but still occupies a small fraction of the total width of the estuary. Exchange flow is relatively weak during spring tides, resulting from oscillatory shear dispersion in the channel augmented by weak Eulerian exchange flow. During neap tides, stratification and shear increase markedly, resulting in a strong Eulerian residual shear flow driven mainly by the along‐estuary density gradient, with a net exchange flow roughly 5 times that of the spring tide. During both spring and neap tides, lateral salinity gradients generated by differential advection at the edge of the channel drive a tidally oscillating cross‐channel flow, which strongly influences the stratification, along‐estuary salt balance, and momentum balance. The lateral flow also causes the phase variation in salinity that results in oscillatory shear dispersion and is an advective momentum source contributing to the residual circulation. Whereas the shoals make a negligible direct contribution to the exchange flow, they have an indirect influence due to the salinity gradients between the channel and the shoal.
more »
« less
Using Tracer Variance Decay to Quantify Variability of Salinity Mixing in the Hudson River Estuary
Abstract The salinity structure in an estuary is controlled by time‐dependent mixing processes. However, the locations and temporal variability of where significant mixing occurs is not well‐understood. Here we utilize a tracer variance approach to demonstrate the spatial and temporal structure of salinity mixing in the Hudson River Estuary. We run a 4‐month hydrodynamic simulation of the tides, currents, and salinity that captures the spring‐neap tidal variability as well as wind‐driven and freshwater flow events. On a spring‐neap time scale, salinity variance dissipation (mixing) occurs predominantly during the transition from neap to spring tides. On a tidal time scale, 60% of the salinity variance dissipation occurs during ebb tides and 40% during flood tides. Spatially, mixing during ebbs occurs primarily where lateral bottom salinity fronts intersect the bed at the transition from the main channel to adjacent shoals. During ebbs, these lateral fronts form seaward of constrictions located at multiple locations along the estuary. During floods, mixing is generated by a shear layer elevated in the water column at the top of the mixed bottom boundary layer, where variations in the along channel density gradients locally enhance the baroclinic pressure gradient leading to stronger vertical shear and more mixing. For both ebb and flood, the mixing occurs at the location of overlap of strong vertical stratification and eddy diffusivity, not at the maximum of either of those quantities. This understanding lends a new insight to the spatial and time dependence of the estuarine salinity structure.
more »
« less
- Award ID(s):
- 1736539
- PAR ID:
- 10450841
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 125
- Issue:
- 12
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Curvature can create secondary circulation and flow separation in tidal channels, and both have important consequences for the along-channel momentum budget. The North River is a sinuous estuary where drag is observed to be higher than expected, and a numerical model is used to investigate the influence of curvature-induced processes on the momentum distribution and drag. The hydrodynamic drag is greatly increased in channel bends compared to that for straight channel flows. Drag coefficients are calculated using several approaches to identify the different factors contributing to the drag increase. Flow separation creates low-pressure recirculation zones on the lee side of the bends and results in form drag. Form drag is the dominant source of the increase in total drag during flood tides and is less of a factor during ebb tides. During both floods and ebbs, curvature-induced secondary circulation transports higher-momentum fluid to the lower water column through vertical and lateral advection. Consequently, the streamwise velocity profile deviates from the classic log profile and vertical shear becomes more concentrated near the bed. This redistribution by the lateral circulation causes an overall increase in bottom friction and contributes to the increased drag. Additionally, spatial variations in the depth-averaged velocity field due to the curvature-induced flow are nonlinearly correlated with the bathymetric structure, leading to increased bottom friction. In addition to affecting the tidal flow, the redistributed momentum and altered bottom shear stress have clear implications for channel morphodynamics.more » « less
-
Abstract Idealized numerical simulations were conducted to investigate the influence of channel curvature on estuarine stratification and mixing. Stratification is decreased and tidal energy dissipation is increased in sinuous estuaries compared to straight channel estuaries. We applied a vertical salinity variance budget to quantify the influence of straining and mixing on stratification. Secondary circulation due to the channel curvature is found to affect stratification in sinuous channels through both lateral straining and enhanced vertical mixing. Alternating negative and positive lateral straining occur in meanders upstream and downstream of the bend apex, respectively, corresponding to the normal and reversed secondary circulation with curvature. The vertical mixing is locally enhanced in curved channels with the maximum mixing located upstream of the bend apex. Bend-scale bottom salinity fronts are generated near the inner bank upstream of the bend apex as a result of interaction between the secondary flow and stratification. Shear mixing at bottom fronts, instead of overturning mixing by the secondary circulation, provides the dominant mechanism for destruction of stratification. Channel curvature can also lead to increased drag, and using a Simpson number with this increased drag coefficient can relate the decrease in stratification with curvature to the broader estuarine parameter space.more » « less
-
Abstract A unique combination of data collected from fixed instruments, spatial surveys, and a long‐term observing network in the Hudson River demonstrate the importance of spatial and temporal variations in atmospheric gas flux. The atmospheric exchanges of oxygen (O2) and carbon dioxide (CO2) exhibit variability at a range of time scales including pronounced modulation driven by spring‐neap variations in stratification and mixing. During weak neap tides, bottom waters become enriched in pCO2and depleted in dissolved oxygen because strong stratification limits vertical mixing and isolates sub‐pycnocline water from atmospheric exchange. Estuarine circulation also is enhanced during neap tides so that bottom waters, and their associated dissolved gases, are transported up‐estuary. Strong mixing during spring tides effectively ventilates bottom waters resulting in enhanced CO2evasion and O2invasion. The spring‐neap modulation in the estuarine portion of the Hudson River is enhanced because fortnightly variations in mixing have a strong influence on phytoplankton dynamics, allowing strong blooms to occur during weak neap tides. During blooms, periods of CO2invasion and O2evasion occur over much of the lower stratified estuary. The along‐estuary distribution of stratification, which decreases up‐estuary, favors enhanced gas exchange near the limit of salt, where vertical stratification is absent. This region, which we call the estuarine gas exchange maximum (EGM), results from the convergence in bottom transport and is analogous to the estuarine turbidity maximum (ETM). Much like the ETM, the EGM is likely to be a common feature in many partially mixed and stratified estuarine systems.more » « less
-
Abstract The salinity distribution of an estuary depends on the balance between the river outflow, which is seaward, and a dispersive salt flux, which is landward. The dispersive salt flux at a fixed cross‐section can be divided into shear dispersion, which is caused by spatial correlations of the cross‐sectionally varying velocity and salinity, and the tidal oscillatory salt flux, which results from the tidal correlation between the cross‐section averaged, tidally varying components of velocity and salinity. The theoretical moving plane analysis of Dronkers and van de Kreeke (1986) indicates that the oscillatory salt flux is exactly equal to the difference between the “local” shear dispersion at a fixed location and the shear dispersion which occurred elsewhere within a tidal excursion; therefore, they refer to the oscillatory salt flux as “nonlocal” dispersion. We apply their moving plane analysis to a numerical model of a short, tidally dominated estuary and provide the first quantitative confirmation of the theoretical result that the spatiotemporal variability of shear dispersion accounts for the oscillatory salt flux. Shear dispersion is localized in space and time due to the tidal variation of currents and the position of the along‐channel salinity distribution with respect to topographic features. We find that dispersion near the mouth contributes strongly to the salt balance, especially under strong river and tidal forcing. Additionally, while vertical shear dispersion produces the majority of dispersive salt flux during neap tide and high flow, lateral mechanisms provide the dominant mode of dispersion during spring tide and low flow.more » « less
An official website of the United States government
