skip to main content


Title: Implementation and characterization of a physiologically relevant flow waveform in a 3D microfluidic model of the blood–brain barrier
Abstract

Previous in vitro studies interrogating the endothelial response to physiologically relevant flow regimes require specialized pumps to deliver time‐dependent waveforms that imitate in vivo blood flow. The aim of this study is to create a low‐cost and broadly adaptable approach to mimic physiological flow, and then use this system to characterize the effect of flow separation on velocity and shear stress profiles in a three‐dimensional (3D) topology. The flow apparatus incorporates a programmable linear actuator that superposes oscillations on a constant mean flow driven by a peristaltic pump to emulate flow in the carotid artery. The flow is perfused through a 3D in vitro model of the blood–brain barrier designed to induce separated flow. Experimental flow patterns measured by microparticle image velocimetry and modeled by computational fluid dynamics reveal periodic changes in the instantaneous shear stress along the channel wall. Moreover, the time‐dependent flow causes periodic flow separation zones, resulting in variable reattachment points during the cycle. The effects of these complex flow regimes are assessed by evaluating the integrity of the in vitro blood–brain barrier model. Permeability assays and immunostaining for proteins associated with tight junctions reveal barrier breakdown in the region of disturbed flow. In conclusion, the flow system described here creates complex, physiologically relevant flow profiles that provide deeper insight into the fluid dynamics of separated flow and pave the way for future studies interrogating the cellular response to complex flow regimes.

 
more » « less
Award ID(s):
1728239
NSF-PAR ID:
10450868
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biotechnology and Bioengineering
Volume:
118
Issue:
7
ISSN:
0006-3592
Page Range / eLocation ID:
p. 2411-2421
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background Plasma gelsolin (pGSN) is an important part of the blood actin buffer that prevents negative consequences of possible F-actin deposition in the microcirculation and has various functions during host immune response. Recent reports reveal that severe COVID-19 correlates with reduced levels of pGSN. Therefore, using an in vitro system, we investigated whether pGSN could attenuate increased permeability of the blood–brain barrier (BBB) during its exposure to the portion of the SARS-CoV-2 spike protein containing the receptor binding domain (S1 subunit). Materials and methods Two- and three-dimensional models of the human BBB were constructed using the human cerebral microvascular endothelial cell line hCMEC/D3 and exposed to physiologically relevant shear stress to mimic perfusion in the central nervous system (CNS). Trans-endothelial electrical resistance (TEER) as well as immunostaining and Western blotting of tight junction (TJ) proteins assessed barrier integrity in the presence of the SARS-CoV-2 spike protein and pGSN. The IncuCyte Live Imaging system evaluated the motility of the endothelial cells. Magnetic bead-based ELISA was used to determine cytokine secretion. Additionally, quantitative real-time PCR (qRT-PCR) revealed gene expression of proteins from signaling pathways that are associated with the immune response. Results pGSN reversed S1-induced BBB permeability in both 2D and 3D BBB models in the presence of shear stress. BBB models exposed to pGSN also exhibited attenuated pro-inflammatory signaling pathways (PI3K, AKT, MAPK, NF-κB), reduced cytokine secretion (IL-6, IL-8, TNF-α), and increased expression of proteins that form intercellular TJ (ZO-1, occludin, claudin-5). Conclusion Due to its anti-inflammatory and protective effects on the brain endothelium, pGSN has the potential to be an alternative therapeutic target for patients with severe SARS-CoV-2 infection, especially those suffering neurological complications of COVID-19. 
    more » « less
  2. Microphysiological systems (MPS) incorporate physiologically relevant microanatomy, mechanics, and cells to mimic tissue function. Reproducible and standardized in vitro models of tissue barriers, such as the blood-tissue interface (BTI), are critical for next-generation MPS applications in research and industry. Many models of the BTI are limited by the need for semipermeable membranes, use of homogenous cell populations, or 2D culture. These factors limit the relevant endothelial-epithelial contact and 3D transport, which would best mimic the BTI. Current models are also difficult to assemble, requiring precise alignment and layering of components. The work reported herein details the engineering of a BTI-on-a-chip (BTI Chip) that addresses current disadvantages by demonstrating a single layer, membrane-free design. Laminar flow profiles, photocurable hydrogel scaffolds, and human cell lines were used to construct a BTI Chip that juxtaposes an endothelium in direct contact with a 3D engineered tissue. A biomaterial composite, gelatin methacryloyl and 8-arm polyethylene glycol thiol, was used for in situ fabrication of a tissue structure within a Y-shaped microfluidic device. To produce the BTI, a laminar flow profile was achieved by flowing a photocurable precursor solution alongside phosphate buffered saline. Immediately after stopping flow, the scaffold underwent polymerization through a rapid exposure to UV light (<300 mJ/cm2). After scaffold formation, blood vessel endothelial cells were introduced and allowed to adhere directly to the 3D tissue scaffold, without barriers or phase guides. Fabrication of the BTI Chip was demonstrated in both an epithelial tissue model and blood-brain barrier (BBB) model. In the epithelial model, scaffolds were seeded with human dermal fibroblasts. For the BBB models, scaffolds were seeded with the immortalized glial cell line, SVGP12. The BTI Chip microanatomy was analyzed post facto by immunohistochemistry, showing the uniform production of a patent endothelium juxtaposed with a 3D engineered tissue. Fluorescent tracer molecules were used to characterize the permeability of the BTI Chip. The BTI Chips were challenged with an efflux pump inhibitor, cyclosporine A, to assess physiological function and endothelial cell activation. Operation of physiologically relevant BTI Chips and a novel means for high-throughput MPS generation was demonstrated, enabling future development for drug candidate screening and fundamental biological investigations. 
    more » « less
  3. null (Ed.)
    Drug development suffers from a lack of predictive and human-relevant in vitro models. Organ-on-chip (OOC) technology provides advanced culture capabilities to generate physiologically appropriate, human-based tissue in vitro , therefore providing a route to a predictive in vitro model. However, OOC technologies are often created at the expense of throughput, industry-standard form factors, and compatibility with state-of-the-art data collection tools. Here we present an OOC platform with advanced culture capabilities supporting a variety of human tissue models including liver, vascular, gastrointestinal, and kidney. The platform has 96 devices per industry standard plate and compatibility with contemporary high-throughput data collection tools. Specifically, we demonstrate programmable flow control over two physiologically relevant flow regimes: perfusion flow that enhances hepatic tissue function and high-shear stress flow that aligns endothelial monolayers. In addition, we integrate electrical sensors, demonstrating quantification of barrier function of primary gut colon tissue in real-time. We utilize optical access to the tissues to directly quantify renal active transport and oxygen consumption via integrated oxygen sensors. Finally, we leverage the compatibility and throughput of the platform to screen all 96 devices using high content screening (HCS) and evaluate gene expression using RNA sequencing (RNA-seq). By combining these capabilities in one platform, physiologically-relevant tissues can be generated and measured, accelerating optimization of an in vitro model, and ultimately increasing predictive accuracy of in vitro drug screening. 
    more » « less
  4. The motion of cells orthogonal to the direction of main flow is of importance in natural and engineered systems. The lateral movement of red blood cells (RBCs) distal to sudden expansion is considered to influence the formation and progression of thrombosis in venous valves, aortic aneurysms, and blood-circulating devices and is also a determining parameter for cell separation applications in flow-focusing microfluidic devices. Although it is known that the unique geometry of venous valves alters the blood flow patterns and cell distribution in venous valve sinuses, the interactions between fluid flow and RBCs have not been elucidated. Here, using a dilute cell suspension in an in vitro microfluidic model of a venous valve, we quantified the spatial distribution of RBCs by microscopy and image analysis, and using micro-particle image velocimetry and 3D computational fluid dynamics simulations, we analyzed the complex flow patterns. The results show that the local hematocrit in the valve pockets is spatially heterogeneous and is significantly different from the feed hematocrit. Above a threshold shear rate, the inertial separation of streamlines and lift forces contribute to an uneven distribution of RBCs in the vortices, the entrapment of RBCs in the vortices, and non-monotonic wall shear stresses in the valve pockets. Our experimental and computational characterization provides insights into the complex interactions between fluid flow, RBC distribution, and wall shear rates in venous valve mimics, which is of relevance to understanding the pathophysiology of thrombosis and improving cell separation efficiency.

     
    more » « less
  5. Abstract Background

    Circulating miRNAs (c-miRNAs) are found in most, if not all, biological fluids and are becoming well-established non-invasive biomarkers of many human pathologies. However, their features in non-pathological contexts and whether their expression profiles reflect normal life history events have received little attention, especially in non-mammalian species. The aim of the present study was to investigate the potential of c-miRNAs to serve as biomarkers of reproductive and metabolic states in fish.

    Results

    The blood plasma was sampled throughout the reproductive cycle of female rainbow trout subjected to two different feeding regimes that triggered contrasting metabolic states. In addition, ovarian fluid was sampled at ovulation, and all samples were subjected to small RNA-seq analysis, leading to the establishment of a comprehensive miRNA repertoire (i.e., miRNAome) and enabling subsequent comparative analyses to a panel of RNA-seq libraries from a wide variety of tissues and organs. We showed that biological fluid miRNAomes are complex and encompass a high proportion of the overall rainbow trout miRNAome. While sharing a high proportion of common miRNAs, the blood plasma and ovarian fluid miRNAomes exhibited strong fluid-specific signatures. We further revealed that the blood plasma miRNAome significantly changed depending on metabolic and reproductive states. We subsequently identified three evolutionarily conserved muscle-specific miRNAs or myomiRs (miR-1-1/2-3p, miR-133a-1/2-3p, and miR-206-3p) that accumulated in the blood plasma in response to high feeding rates, making these myomiRs strong candidate biomarkers of active myogenesis. We also identified miR-202-5p as a candidate biomarker for reproductive success that could be used to predict ovulation and/or egg quality.

    Conclusions

    Together, these promising results reveal the high potential of c-miRNAs, including evolutionarily conserved myomiRs, as physiologically relevant biomarker candidates and pave the way for the use of c-miRNAs for non-invasive phenotyping in various fish species.

     
    more » « less