skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Altering metabolite distribution at Xenopus cleavage stages affects left–right gene expression asymmetries
Summary The left–right (L–R) axis of most bilateral animals is established during gastrulation when a transient ciliated structure creates a directional flow of signaling molecules that establish asymmetric gene expression in the lateral plate mesoderm. However, in some animals, an earlier differential distribution of molecules and cell division patterns initiate or at least influence L–R patterning. Using single‐cell high‐resolution mass spectrometry, we previously reported a limited number of small molecule (metabolite) concentration differences between left and right dorsal‐animal blastomeres of the eight‐cellXenopusembryo. Herein, we examined whether altering the distribution of some of these molecules influenced early events in L–R patterning. Using lineage tracing, we found that injecting right‐enriched metabolites into the left cell caused its descendant cells to disperse in patterns that varied from those in control gastrulae; this did not occur when left‐enriched metabolites were injected into the right cell. At later stages, injecting left‐enriched metabolites into the right cell perturbed the expression of genes known to: (a) be required for the formation of the gastrocoel roof plate (foxj1); (b) lead to the asymmetric expression of Nodal (dand5/coco); or (c) result from asymmetricalnodalexpression (pitx2). Despite these perturbations in gene expression, we did not observe heterotaxy in heart or gut looping at tadpole stages. These studies indicate that altering metabolite distribution at cleavage stages at the concentrations tested in this study impacts the earliest steps of L–R gene expression that then can be compensated for during organogenesis.  more » « less
Award ID(s):
1832968
PAR ID:
10450945
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
genesis
Volume:
59
Issue:
5-6
ISSN:
1526-954X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Umulis, David (Ed.)
    The vertebrate hindbrain is segmented into rhombomeres (r) initially defined by distinct domains of gene expression. Previous studies have shown that noise-induced gene regulation and cell sorting are critical for the sharpening of rhombomere boundaries, which start out rough in the forming neural plate (NP) and sharpen over time. However, the mechanisms controlling simultaneous formation of multiple rhombomeres and accuracy in their sizes are unclear. We have developed a stochastic multiscale cell-based model that explicitly incorporates dynamic morphogenetic changes (i.e. convergent-extension of the NP), multiple morphogens, and gene regulatory networks to investigate the formation of rhombomeres and their corresponding boundaries in the zebrafish hindbrain. During pattern initiation, the short-range signal, fibroblast growth factor (FGF), works together with the longer-range morphogen, retinoic acid (RA), to specify all of these boundaries and maintain accurately sized segments with sharp boundaries. At later stages of patterning, we show a nonlinear change in the shape of rhombomeres with rapid left-right narrowing of the NP followed by slower dynamics. Rapid initial convergence improves boundary sharpness and segment size by regulating cell sorting and cell fate both independently and coordinately. Overall, multiple morphogens and tissue dynamics synergize to regulate the sizes and boundaries of multiple segments during development. 
    more » « less
  2. The biological basis of lateralized cranial aberrations can be rooted in early asymmetric patterning of developmental tissues. However, precisely how development impacts natural cranial asymmetries remains incompletely understood. Here, we examined embryonic patterning of the cranial neural crest at two phases of embryonic development in a natural animal system with two morphotypes: cave-dwelling and surface-dwelling fish. Surface fish are highly symmetric with respect to cranial form at adulthood, however adult cavefish harbor diverse cranial asymmetries. To examine if lateralized aberrations of the developing neural crest underpin these asymmetries, we used an automated technique to quantify the area and expression level of cranial neural crest markers on the left and right sides of the embryonic head. We examined the expression of marker genes encoding both structural proteins and transcription factors at two key stages of development: 36 hpf (∼mid-migration of the neural crest) and 72 hpf (∼early differentiation of neural crest derivatives). Interestingly, our results revealed asymmetric biases at both phases of development in both morphotypes, however consistent lateral biases were less common in surface fish as development progressed. Additionally, this work provides the information on neural crest development, based on whole-mount expression patterns of 19 genes, between stage-matched cave and surface morphs. Further, this study revealed ‘asymmetric’ noise as a likely normative component of early neural crest development in natural Astyanax fish. Mature cranial asymmetries in cave morphs may arise from persistence of asymmetric processes during development, or as a function of asymmetric processes occurring later in the life history. 
    more » « less
  3. The purpose of this study was to evaluate the use of compressible soft robotic sensors (C-SRS) in determining plantar pressure to infer vertical and shear forces in wearable technology: A ground reaction pressure sock (GRPS). To assess pressure relationships between C-SRS, pressure cells on a BodiTrakTM Vector Plate, and KistlerTM Force Plates, thirteen volunteers performed three repetitions of three different movements: squats, shifting center-of-pressure right to left foot, and shifting toes to heels with C-SRS in both anterior–posterior (A/P) and medial–lateral (M/L) sensor orientations. Pearson correlation coefficient of C-SRS to BodiTrakTM Vector Plate resulted in an average R-value greater than 0.70 in 618/780 (79%) of sensor to cell comparisons. An average R-value greater than 0.90 was seen in C-SRS comparison to KistlerTM Force Plates during shifting right to left. An autoregressive integrated moving average (ARIMA) was conducted to identify and estimate future C-SRS data. No significant differences were seen in sensor orientation. Sensors in the A/P orientation reported a mean R2 value of 0.952 and 0.945 in the M/L sensor orientation, reducing the effectiveness to infer shear forces. Given the high R values, the use of C-SRSs to infer normal pressures appears to make the development of the GRPS feasible. 
    more » « less
  4. null (Ed.)
    Growing evidence across organisms points to altered energy metabolism as an adverse outcome of metal oxide nanomaterial toxicity, with a mechanism of toxicity potentially related to the redox chemistry of processes involved in energy production. Despite this evidence, the significance of this mechanism has gone unrecognized in nanotoxicology due to the field’s focus on oxidative stress as a universal—but non-specific—nanotoxicity mechanism. To further explore metabolic impacts, we determined LCO’s effects on these pathways in the model organism Daphnia magna through global gene expression analysis using RNA-Seq and untargeted metabolomics by direct-injection mass spectrometry. Our results show a sublethal 1 mg/L 48 h exposure of D. magna to LCO nanosheets causes significant impacts on metabolic pathways versus untreated controls, while exposure to ions released over 48 hr does not. Specifically, transcriptomic analysis using DAVID indicated significant enrichment (Benjamini-adjusted p ≤0.0.5) in LCO-exposed animals for changes in pathways involved in the cellular response to starvation (25 genes), mitochondrial function (70 genes), ATP-binding (70 genes), oxidative phosphorylation (53 genes), NADH dehydrogenase activity (12 genes), and protein biosynthesis (40 genes). Metabolomic analysis using MetaboAnalyst indicated significant enrichment (gamma-adjusted p < 0.1) for changes in amino acid metabolism (19 metabolites) and starch, sucrose, and galactose metabolism (7 metabolites). Overlap of significantly impacted pathways by RNA-Seq and metabolomics suggests amino acid breakdown and increased sugar import for energy production. Results indicate that LCO-exposed Daphnia are responding to energy starvation by altering metabolic pathways, both at the gene expression and metabolite level. These results support altered energy production as a sensitive nanotoxicity adverse outcome for LCO exposure and suggest negative impacts on energy metabolism as an important avenue for future studies of nanotoxicity, including for other biological systems and for metal oxide nanomaterials more broadly. 
    more » « less
  5. The onset of parental care is associated with shifts in parents’ perception of sensory stimuli from infants, mediated by neural plasticity in sensory systems. In new mothers, changes in auditory and olfactory processing have been linked to plasticity at several points along both sensory pathways, including cortical changes that are modulated, at least in part, by oxytocin. In males of biparental species, vasopressin, in addition to oxytocin, is important for modulating parental behavior; however, little is known about sensory plasticity in new fathers. We examined variation in the mRNA expression of oxytocin and vasopressin receptors (Oxtr and Avpr1a) in sensory cortices of virgin males, paired nonbreeding males, and new fathers in the biparental California mouse (Peromyscus californicus), and variation among cortices using the visual cortex for comparison. Reproductive status did not affect gene expression for either receptor, but compared to the visual cortex, expression of both receptors was higher in the left auditory cortex and lower in the anterior olfactory nucleus. Additionally, expression for both receptors was higher in the left auditory cortex compared to the right auditory cortex. While oxytocin and vasopressin receptor expression may remain stable across reproductive stages in male California mice, our findings provide support for auditory cortex lateralization, with the left auditory cortex possibly displaying higher sensitivity to both oxytocin and vasopressin compared to the right. 
    more » « less