Abstract Buildings use a large amount of energy in the United States. It is important to optimally manage and coordinate the resources across building and power distribution networks to improve overall efficiency. Optimizing the power grid with discrete variables was very challenging for traditional computers and algorithms, as it is an NP-hard problem. In this study, we developed a new optimization solution based on quantum computing for BTG integration. We first used MPC for building loads connected with a commercial distribution grid for cost reduction. Then we used discretization and Benders Decomposition methods to reformulate the problem and decompose the continuous and discrete variables, respectively. We used D-Wave quantum computer to solve dual problems and used conventional algorithm for primal problems. We applied the proposed method to an IEEE 9-bus network with 3 commercial buildings and over 300 residential buildings to evaluate the feasibility and effectiveness. Compared with traditional optimization methods, we obtained similar solutions with some fluctuations and improved computational speed from hours to seconds. The time of quantum computing was greatly reduced to less than 1% of traditional optimization algorithm and software such as MATLAB. Quantum computing has proved the potential to solve large-scale discrete optimization problems for urban energy systems.
more »
« less
An efficient algorithm for community detection in complex weighted networks
Abstract Community detection decomposes large‐scale, complex networks “optimally” into sets of smaller sub‐networks. It finds sub‐networks that have the least inter‐connections and the most intra‐connections. This article presents an efficient community detection algorithm that detects community structures in a weighted network by solving a multi‐objective optimization problem. The whale optimization algorithm is extended to enable it to handle multi‐objective optimization problems with discrete variables and to solve the problems on parallel processors. To this end, the population's positions are discretized using a transfer function that maps real variables to discrete variables, the initialization steps for the algorithm are modified to prevent generating unrealistic connections between variables, and the updating step of the algorithm is redefined to produce integer numbers. To identify the community configurations that are Pareto optimal, the non‐dominated sorting concept is adopted. The proposed algorithm is tested on the Tennessee Eastman process and several benchmark community‐detection problems.
more »
« less
- Award ID(s):
- 1704915
- PAR ID:
- 10451062
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- AIChE Journal
- Volume:
- 67
- Issue:
- 7
- ISSN:
- 0001-1541
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A prominent approach to solving combinatorial optimization problems on parallel hardware is Ising machines, i.e., hardware implementations of networks of interacting binary spin variables. Most Ising machines leverage second-order interactions although important classes of optimization problems, such as satisfiability problems, map more seamlessly to Ising networks with higher-order interactions. Here, we demonstrate that higher-order Ising machines can solve satisfiability problems more resource-efficiently in terms of the number of spin variables and their connections when compared to traditional second-order Ising machines. Further, our results show on a benchmark dataset of Booleank-satisfiability problems that higher-order Ising machines implemented with coupled oscillators rapidly find solutions that are better than second-order Ising machines, thus, improving the current state-of-the-art for Ising machines.more » « less
-
In this work, we consider two-stage quadratic optimization problems under ellipsoidal uncertainty. In the first stage, one needs to decide upon the values of a subset of optimization variables (control variables). In the second stage, the uncertainty is revealed, and the rest of the optimization variables (state variables) are set up as a solution to a known system of possibly nonlinear equations. This type of problem occurs, for instance, in optimization for dynamical systems, such as electric power systems as well as gas and water networks. We propose a convergent iterative algorithm to build a sequence of approximately robustly feasible solutions with an improving objective value. At each iteration, the algorithm optimizes over a subset of the feasible set and uses affine approximations of the second-stage equations while preserving the nonlinearity of other constraints. We implement our approach and demonstrate its performance on Matpower instances of AC optimal power flow. Although this paper focuses on quadratic problems, the approach is suitable for more general setups.more » « less
-
Solving Convex Discrete Optimization via Simulation via Stochastic Localization Algorithms Many decision-making problems in operations research and management science require the optimization of large-scale complex stochastic systems. For a number of applications, the objective function exhibits convexity in the discrete decision variables or the problem can be transformed into a convex one. In “Stochastic Localization Methods for Convex Discrete Optimization via Simulation,” Zhang, Zheng, and Lavaei propose provably efficient simulation-optimization algorithms for general large-scale convex discrete optimization via simulation problems. By utilizing the convex structure and the idea of localization and cutting-plane methods, the developed stochastic localization algorithms demonstrate a polynomial dependence on the dimension and scale of the decision space. In addition, the simulation cost is upper bounded by a value that is independent of the objective function. The stochastic localization methods also exhibit a superior numerical performance compared with existing algorithms.more » « less
-
Network embedding has gained more attentions in recent years. It has been shown that the learned low-dimensional node vector representations could advance a myriad of graph mining tasks such as node classification, community detection, and link prediction. A vast majority of the existing efforts are overwhelmingly devoted to single-layered networks or homogeneous networks with a single type of nodes and node interactions. However, in many real-world applications, a variety of networks could be abstracted and presented in a multilayered fashion. Typical multi-layered networks include critical infrastructure systems, collaboration platforms, social recommender systems, to name a few. Despite the widespread use of multi-layered networks, it remains a daunting task to learn vector representations of different types of nodes due to the bewildering combination of both within-layer connections and cross-layer network dependencies. In this paper, we study a novel problem of multi-layered network embedding. In particular, we propose a principled framework – MANE to model both within-layer connections and cross-layer network dependencies simultaneously in a unified optimization framework for embedding representation learning. Experiments on real-world multi-layered networks corroborate the effectiveness of the proposed framework.more » « less
An official website of the United States government
