skip to main content

This content will become publicly available on December 1, 2024

Title: Efficient optimization with higher-order ising machines

A prominent approach to solving combinatorial optimization problems on parallel hardware is Ising machines, i.e., hardware implementations of networks of interacting binary spin variables. Most Ising machines leverage second-order interactions although important classes of optimization problems, such as satisfiability problems, map more seamlessly to Ising networks with higher-order interactions. Here, we demonstrate that higher-order Ising machines can solve satisfiability problems more resource-efficiently in terms of the number of spin variables and their connections when compared to traditional second-order Ising machines. Further, our results show on a benchmark dataset of Booleank-satisfiability problems that higher-order Ising machines implemented with coupled oscillators rapidly find solutions that are better than second-order Ising machines, thus, improving the current state-of-the-art for Ising machines.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    With the slowdown of improvement in conventional von Neumann systems, increasing attention is paid to novel paradigms such as Ising machines. They have very different approach to solving combinatorial optimization problems. Ising machines have shown great potential in solving binary optimization problems like MaxCut. In this paper, we present an analysis of these systems in boolean satisfiability (SAT) problems. We demonstrate that, in the case of 3-SAT, a basic architecture fails to produce meaningful acceleration, largely due to the relentless progress made in conventional SAT solvers. Nevertheless, careful analysis attributes part of the failure to the lack of two important components: cubic interactions and efficient randomization heuristics. To overcome these limitations, we add proper architectural support for cubic interaction on a state-of-the-art Ising machine. More importantly, we propose a novel semantic-aware annealing schedule that makes the search-space navigation much more efficient than existing annealing heuristics. Using numerical simulations, we show that such an “Augmented” Ising Machine for SAT is projected to outperform state-of-the-art software-based, GPU-based and conventional hardware SAT solvers by orders of magnitude.

    more » « less
  2. Abstract The Ising model provides a natural mapping for many computationally hard combinatorial optimization problems (COPs). Consequently, dynamical system-inspired computing models and hardware platforms that minimize the Ising Hamiltonian, have recently been proposed as a potential candidate for solving COPs, with the promise of significant performance benefit. However, prior work on designing dynamical systems as Ising machines has primarily considered quadratic interactions among the nodes. Dynamical systems and models considering higher order interactions among the Ising spins remain largely unexplored, particularly for applications in computing. Therefore, in this work, we propose Ising spin-based dynamical systems that consider higher order (> 2) interactions among the Ising spins, which subsequently, enables us to develop computational models to directly solve many COPs that entail such higher order interactions (i.e., COPs on hypergraphs). Specifically, we demonstrate our approach by developing dynamical systems to compute the solution for the Boolean NAE-K-SAT (K ≥ 4) problem as well as solve the Max-K-Cut of a hypergraph. Our work advances the potential of the physics-inspired ‘toolbox’ for solving COPs. 
    more » « less
  3. In this paper, we report new results on a novel Ising machine technology for solving combinatorial optimization problems using networks of coupled self-sustaining oscillators. Specifically, we present several working hardware prototypes using CMOS electronic oscillators, built on bread-boards/perfboards and PCBs, implementing Ising machines consisting of up to 240 spins with programmable couplings. We also report that, just by simulating the differential equations of such Ising machines of larger sizes, good solutions can be achieved easily on benchmark optimization problems, demonstrating the effectiveness of oscillator-based Ising machines. 
    more » « less
  4. Solving computationally hard problems using conventional computing architectures is often slow and energetically inefficient. Quantum computing may help with these challenges, but it is still in the early stages of development. A quantum-inspired alternative is to build domain-specific architectures with classical hardware. Here we report a sparse Ising machine that achieves massive parallelism where the flips per second—the key figure of merit—scales linearly with the number of probabilistic bits. Our sparse Ising machine architecture, prototyped on a field-programmable gate array, is up to six orders of magnitude faster than standard Gibbs sampling on a central processing unit, and offers 5–18 times improvements in sampling speed compared with approaches based on tensor processing units and graphics processing units. Our sparse Ising machine can reliably factor semi-primes up to 32 bits and it outperforms competition-winning Boolean satisfiability solvers in approximate optimization. Moreover, our architecture can find the correct ground state, even when inexact sampling is made with faster clocks. Our problem encoding and sparsification techniques could be applied to other classical and quantum Ising machines, and our architecture could potentially be scaled to 1,000,000 or more p-bits using analogue silicon or nanodevice technologies. 
    more » « less
  5. Abstract

    The rich non‐linear dynamics of the coupled oscillators (under second harmonic injection) can be leveraged to solve computationally hard problems in combinatorial optimization such as finding the ground state of the Ising Hamiltonian. While prior work on the stability of the so‐called Oscillator Ising Machines (OIMs) has used the linearization method, in this letter, the authors present a complementary method to analyze stability using the second‐order derivative test of the energy/cost function. The authors establish the equivalence between the two methods, thus augmenting the tool kit for the design and implementation of OIMs.

    more » « less