IntroductionModern understanding of the concept of genetic diversity must include the study of both nuclear and organellar DNA, which differ greatly in terms of their structure, organization, gene content and distribution. This study comprises an analysis of the genetic diversity of the smut fungusSporisorium reilianumf. sp.zeaefrom a mitochondrial perspective. MethodsWhole-genome sequencing data was generated from biological samples ofS. reilianumcollected from different geographical regions. Multiple sequence alignment and gene synteny analysis were performed to further characterize genetic diversity in the context of mitogenomic polymorphisms. ResultsMitochondria of strains collected in China contained unique sequences. The largest unique sequence stretch encompassed a portion ofcox1, a mitochondrial gene encoding one of the subunits that make up complex IV of the mitochondrial electron transport chain. This unique sequence had high percent identity to the mitogenome of the related speciesSporisorium scitamineumandUstilago bromivora. DiscussionThe results of this study hint at potential horizontal gene transfer or mitochondrial genome recombination events during the evolutionary history of basidiomycetes. Additionally, the distinct polymorphic region detected in the Chinese mitogenome provides the ideal foundation to develop a diagnostic method to discern between mitotypes and enhance knowledge on the genetic diversity of this organism.
more »
« less
Comparative phylogeography reveals consistently shallow genetic diversity in a mitochondrial marker in Antarctic bdelloid rotifers
Abstract AimThe long history of isolation of the Antarctic continent, coupled with the harsh ecological conditions of freezing temperatures, could affect the patterns of genetic diversity in the organisms living there. We aim (a) to test whether such pattern can be seen in a mitochondrial marker of bdelloid rotifers, a group of microscopic aquatic and limno‐terrestrial animals and (b) to speculate on the potential mechanisms driving the pattern. LocationFocus on Antarctica. TaxonRotifera Bdelloidea. MethodsWe analysed different metrics of genetic diversity, also spatially explicit ones, including number of haplotypes, accumulation curves, genetic distances, time to the most recent common ancestor, number of independently evolving units from DNA taxonomy, strength of the correlation between geographical and genetic distances, population genetics neutrality and differentiation indices, potential historical processes, obtained from an extensive sample of cytochrome oxidase subunit I (COI) sequences obtained from bdelloid rotifers. We included 2242 individuals from 23 species in a comparison between Antarctic and non‐Antarctic taxa, correcting for sample size directly in the analyses and then by confirming the results also using only a restricted dataset of nine well‐sampled species. ResultsAntarctic species had consistently lower genetic diversity and potential younger relative age than non‐Antarctic species, even if they were similar in sample size, geographical extent, neutrality and differentiation indices, and correlation between genetic and geographical distances. Main conclusionsThe extensive survey of genetic diversity in one mitochondrial marker in Antarctic bdelloids supports previous suggestions from other organisms that the origin and maintenance of terrestrial Antarctic fauna are different from those of other continents. Such differences could be speculated to be due, in the case of bdelloid rotifers, to the more recent origin of the species living there in comparison to non‐Antarctic species.
more »
« less
- Award ID(s):
- 2051704
- PAR ID:
- 10451073
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Biogeography
- Volume:
- 48
- Issue:
- 7
- ISSN:
- 0305-0270
- Page Range / eLocation ID:
- p. 1797-1809
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Although patterns of population genomic variation are well‐studied in animals, there remains room for studies that focus on non‐model taxa with unique biologies. Here we characterise and attempt to explain such patterns in mygalomorph spiders, which are generally sedentary, often occur as spatially clustered demes and show remarkable longevity. Genome‐wide single nucleotide polymorphism (SNP) data were collected for 500 individuals across a phylogenetically representative sample of taxa. We inferred genetic populations within focal taxa using a phylogenetically informed clustering approach, and characterised patterns of diversity and differentiation within‐ and among these genetic populations, respectively. Using phylogenetic comparative methods we asked whether geographical range sizes and ecomorphological variables (behavioural niche and body size) significantly explain patterns of diversity and differentiation. Specifically, we predicted higher genetic diversity in genetic populations with larger geographical ranges, and in small‐bodied taxa. We also predicted greater genetic differentiation in small‐bodied taxa, and in burrowing taxa. We recovered several significant predictors of genetic diversity, but not genetic differentiation. However, we found generally high differentiation across genetic populations for all focal taxa, and a consistent signal for isolation‐by‐distance irrespective of behavioural niche or body size. We hypothesise that high population genetic structuring, likely reflecting combined dispersal limitation and microhabitat specificity, is a shared trait for all mygalomorphs. Few studies have found ubiquitous genetic structuring for an entire ancient and species‐rich animal clade.more » « less
-
PremiseDivergence depends on the strength of selection and frequency of gene flow between taxa, while reproductive isolation relies on mating barriers and geographic distance. Less is known about how these processes interact at early stages of speciation. Here, we compared population‐level differentiation in floral phenotype and genetic sequence variation among recently divergedCastillejato explore patterns of diversification under different scenarios of reproductive isolation. MethodsUsing target enrichment enabled by the Angiosperms353 probe set, we assessed genetic distance among 50 populations of fourCastillejaspecies. We investigated whether patterns of genetic divergence are explained by floral trait variation or geographic distance in two focal groups: the widespreadC. sessilifloraand the more restrictedC. purpureaspecies complex. ResultsWe document thatC. sessilifloraand theC. purpureacomplex are characterized by high diversity in floral color across varying geographic scales. Despite phenotypic divergence, groups were not well supported in phylogenetic analyses, and little genetic differentiation was found across targeted Angiosperms353 loci. Nonetheless, a principal coordinate analysis of single nucleotide polymorphisms revealed differentiation withinC. sessilifloraacross floral morphs and geography and less differentiation among species of theC. purpureacomplex. ConclusionsPatterns of genetic distance inC. sessiliflorasuggest species cohesion maintained over long distances despite variation in floral traits. In theC. purpureacomplex, divergence in floral color across narrow geographic clines may be driven by recent selection on floral color. These contrasting patterns of floral and genetic differentiation reveal that divergence can arise via multiple eco‐evolutionary paths.more » « less
-
Abstract Island biotas provide unparalleled opportunities to examine evolutionary processes. Founder effects and bottlenecks, e.g., typically decrease genetic diversity in island populations, while selection for reduced dispersal can increase population structure. Given that support for these generalities mostly comes from single-species analyses, assemblage-level comparisons are needed to clarify how (i) colonization affects the gene pools of interacting insular organisms, and (ii) patterns of genetic differentiation vary within assemblages of organisms. Here, we use genome-wide sequence data from ultraconserved elements (UCEs) to compare the genetic diversity and population structure of mainland and island populations of nine ant species in coastal southern California. As expected, island populations (from Santa Cruz Island) had lower expected heterozygosity and Watterson’s theta compared to mainland populations (from the Lompoc Valley). Island populations, however, exhibited smaller genetic distances among samples, indicating less population subdivision. Within the focal assemblage, pairwise Fst values revealed pronounced interspecific variation in mainland-island differentiation, which increases with gyne body size. Our results reveal population differences across an assemblage of interacting species and illuminate general patterns of insularization in ants. Compared to single-species studies, our analysis of nine conspecific population pairs from the same island-mainland system offers a powerful approach to studying fundamental evolutionary processes.more » « less
-
Abstract Genetic diversity is a fundamental component of biodiversity. Examination of global patterns of genetic diversity can help highlight mechanisms underlying species diversity, though a recurring challenge has been that patterns may vary by molecular marker. Here, we compiled 6862 observations of genetic diversity from 492 species of marine fish and tested among hypotheses for diversity gradients: the founder effect hypothesis, the kinetic energy hypothesis, and the productivity‐diversity hypothesis. We fit generalized linear mixed effect models (GLMMs) and explored the extent to which various macroecological drivers (latitude, longitude, temperature (SST), and chlorophyll‐a concentration) explained variation in genetic diversity. We found that mitochondrial genetic diversity followed geographic gradients similar to those of species diversity, being highest near the Equator, particularly in the Coral Triangle, while nuclear genetic diversity did not follow clear geographic patterns. Despite these differences, all genetic diversity metrics were correlated with chlorophyll‐a concentration, while mitochondrial diversity was also positively associated with SST. Our results provide support for the kinetic energy hypothesis, which predicts that elevated mutation rates at higher temperatures increase mitochondrial but not necessarily nuclear diversity, and the productivity‐diversity hypothesis, which posits that resource‐rich regions support larger populations with greater genetic diversity. Overall, these findings reveal how environmental variables can influence mutation rates and genetic drift in the ocean, caution against using mitochondrial macrogenetic patterns as proxies for whole‐genome diversity, and aid in defining global gradients of genetic diversity.more » « less
An official website of the United States government
