Abstract Premise The use of cetyltrimethylammonium bromide (CTAB) is an effective and inexpensive method of extracting DNA from plants. The CTAB protocol is frequently modified to optimize DNA extractions, but experimental approaches rarely perturb a single variable at a time to systematically infer their effect on DNA quantity and quality. Methods and Results We investigated how chemical additives, incubation temperature, and lysis duration affected DNA quantity and quality. Altering those parameters influenced DNA concentrations and fragment lengths, but only extractant purity was significantly affected. CTAB and CTAB plus polyvinylpyrrolidone buffers produced the highest DNA quality and quantity. Extractions from silica gel–preserved tissues had significantly higher DNA yield, longer DNA fragments, and purer extractants compared to herbarium‐preserved tissues. Conclusions We recommend DNA extractions of silica gel–preserved tissues that include a shorter and cooler lysis step, which results in purer extractions compared to a longer and hotter lysis step, while preventing fragmentation and reducing time.
more »
« less
What is the “modified” CTAB protocol? Characterizing modifications to the CTAB DNA extraction protocol
Abstract Cetyltrimethylammonium bromide (CTAB)–based methods are widely used to isolate DNA from plant tissues, but the unique chemical composition of secondary metabolites among plant species has necessitated optimization. Research articles often cite a “modified” CTAB protocol without explicitly stating how the protocol had been altered, creating non‐reproducible studies. Furthermore, the various modifications that have been applied to the CTAB protocol have not been rigorously reviewed and doing so could reveal optimization strategies across study systems. We surveyed the literature for modified CTAB protocols used for the isolation of plant DNA. We found that every stage of the CTAB protocol has been modified, and we summarized those modifications to provide recommendations for extraction optimization. Future genomic studies will rely on optimized CTAB protocols. Our review of the modifications that have been used, as well as the protocols we provide here, could better standardize DNA extractions, allowing for repeatable and transparent studies.
more »
« less
- Award ID(s):
- 2117446
- PAR ID:
- 10451106
- Date Published:
- Journal Name:
- Applications in Plant Sciences
- Volume:
- 11
- Issue:
- 3
- ISSN:
- 2168-0450
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Studies of plant–microbe interactions using synthetic microbial communities (SynComs) often require the removal of seed-associated microbes by seed sterilization prior to inoculation to provide gnotobiotic growth conditions. Diverse seed sterilization protocols have been developed and have been used on different plant species with various amounts of validation. From these studies it has become clear that each plant species requires its own optimized sterilization protocol. It has, however, so far not been tested whether the same protocol works equally well for different varieties and seed sources of one plant species. We evaluated six seed sterilization protocols on two different varieties (Sugar Bun and B73) of maize. All unsterilized maize seeds showed fungal growth upon germination on filter paper, highlighting the need for a sterilization protocol. A short sterilization protocol with hypochlorite and ethanol was sufficient to prevent fungal growth on Sugar Bun germinants; however a longer protocol with heat treatment and germination in fungicide was needed to obtain clean B73 germinants. This difference may have arisen from the effect of either genotype or seed source. We then tested the protocol that performed best for B73 on three additional maize genotypes from four sources. Seed germination rates and fungal contamination levels varied widely by genotype and geographic source of seeds. Our study shows that consideration of both variety and seed source is important when optimizing sterilization protocols and highlights the importance of including seed source information in plant–microbe interaction studies that use sterilized seeds. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .more » « less
-
The goal of tissue decellularization is to efficiently remove unwanted cellular components, such as DNA and cellular debris, while retaining the complex structural and molecular milieu within the extracellular matrix (ECM). Decellularization protocols to date are centered on customized tissue-specific and lab-specific protocols that involve consecutive manual steps which results in variable and protocol-specific ECM material. The differences that result from the inconsistent protocols between decellularized ECMs affect consistency across batches, limit comparisons between results obtained from different laboratories, and could limit the transferability of the material for consistent laboratory or clinical use. The present study is the first proof-of-concept towards the development of a standardized protocol that can be used to derive multiple ECM biomaterials (powders and hydrogels) via a previously established automated system. The automated decellularization method developed by our group was used due to its short decellularization time (4 hours) and its ability to reduce batch-to-batch variability. The ECM obtained using this first iteration of a unified protocol was able to produce ECM hydrogels from skin, lung, muscle, tendons, cartilage, and laryngeal tissues. All hydrogels formed in this study were cytocompatible and showed gelation and rheological properties consistent with previous ECM hydrogels. The ECMs also showed unique proteomic composition. The present study represents the first step towards developing standardized protocols that can be used on multiple tissues in a fast, scalable, and reproducible manner.more » « less
-
Abstract PremiseThe preservation of plant tissues in ethanol is conventionally viewed as problematic. Here, we show that leaf preservation in ethanol combined with proteinase digestion can provide high‐quality DNA extracts. Additionally, as a pretreatment, ethanol can facilitate DNA extraction for recalcitrant samples. MethodsDNA was isolated from leaves preserved with 96% ethanol or from silica‐desiccated leaf samples and herbarium fragments that were pretreated with ethanol. DNA was extracted from herbarium tissues using a special ethanol pretreatment protocol, and these extracts were compared with those obtained using the standard cetyltrimethylammonium bromide (CTAB) method. ResultsDNA extracted from tissue preserved in, or pretreated with, ethanol was less fragmented than DNA from tissues without pretreatment. Adding proteinase digestion to the lysis step increased the amount of DNA obtained from the ethanol‐pretreated tissues. The combination of the ethanol pretreatment with liquid nitrogen freezing and a sorbitol wash prior to cell lysis greatly improved the quality and yield of DNA from the herbarium tissue samples. DiscussionThis study critically reevaluates the consequences of ethanol for plant tissue preservation and expands the utility of pretreatment methods for molecular and phylogenomic studies.more » « less
-
Abstract Several studies comparing primate locomotion under lab versus field conditions have shown the importance of implementing both types of studies, as each has their advantages and disadvantages. However, three‐dimensional (3D) motion capture of primates has been challenging under natural conditions. In this study, we provide a detailed protocol on how to collect 3D biomechanical data on primate leaping in their natural habitat that can be widely implemented. To record primate locomotion in the dense forest we use modified GoPro Hero Black cameras with zoom lenses that can easily be carried around and set up on tripods. We outline details on how to obtain camera calibrations at greater heights and how to process the collected data using the MATLAB camera calibration app and the motion tracking software DLTdv8a. We further developed a new MATLAB application “WildLeap3D” to generate biomechanical performance metrics from the derivedx,y,zcoordinates of the leaps. We provide details on how to collect data on support diameter, compliance, and orientation, and combine these with the jumps to study locomotor performance in an ecological context. We successfully reconstructed leaps of wild primates in the 3D space under natural conditions and provided data on four representative leaps. We provide exemplar data on primate velocity and acceleration during a leap and show how our protocol can be used to analyze segmental kinematics. This study will help to make motion capture of freely moving animals more accessible and help further our knowledge about animal locomotion and movement.more » « less