- Award ID(s):
- 2118725
- PAR ID:
- 10451142
- Date Published:
- Journal Name:
- Journal of educational data mining
- ISSN:
- 2157-2100
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Randomized A/B tests within online learning platforms represent an exciting direction in learning sciences. With minimal assumptions, they allow causal effect estimation without confounding bias and exact statistical inference even in small samples. However, often experimental samples and/or treatment effects are small, A/B tests are under-powered, and effect estimates are overly imprecise. Recent methodological advances have shown that power and statistical precision can be substantially boosted by coupling design-based causal estimation to machine-learning models of rich log data from historical users who were not in the experiment. Estimates using these techniques remain unbiased and inference remains exact without any additional assumptions. This paper reviews those methods and applies them to a new dataset including over 250 randomized A/B comparisons conducted within ASSISTments, an online learning platform. We compare results across experiments using four novel deep-learning models of auxiliary data, and show that incorporating auxiliary data into causal estimates is roughly equivalent to increasing the sample size by 20% on average, or as much as 50-80% in some cases, relative to t-tests, and by about 10% on average, or as much as 30-50%, compared to cutting-edge machine learning unbiased estimates that use only data from the experiments. We show the gains can be even larger for estimating subgroup effects, that they hold even when the remnant is unrepresentative of the A/B test sample, and extend to post-stratification population effects estimators.more » « less
-
Randomized A/B tests within online learning platforms represent an exciting direction in learning sci- ences. With minimal assumptions, they allow causal effect estimation without confounding bias and exact statistical inference even in small samples. However, often experimental samples and/or treat- ment effects are small, A/B tests are under-powered, and effect estimates are overly imprecise. Recent methodological advances have shown that power and statistical precision can be substantially boosted by coupling design-based causal estimation to machine-learning models of rich log data from historical users who were not in the experiment. Estimates using these techniques remain unbiased and inference remains exact without any additional assumptions. This paper reviews those methods and applies them to a new dataset including over 250 randomized A/B comparisons conducted within ASSISTments, an online learning platform. We compare results across experiments using four novel deep-learning models of auxiliary data, and show that incorporating auxiliary data into causal estimates is roughly equivalent to increasing the sample size by 20% on average, or as much as 50-80% in some cases, relative to t-tests, and by about 10% on average, or as much as 30-50%, compared to cutting-edge machine learning unbiased estimates that use only data from the experiments. We show the gains can be even larger for estimating subgroup effects, that they hold even when the remnant is unrepresentative of the A/B test sample, and extend to post-stratification population effects estimators.more » « less
-
Abstract Randomized controlled trials (RCTs) admit unconfounded design-based inference – randomization largely justifies the assumptions underlying statistical effect estimates – but often have limited sample sizes. However, researchers may have access to big observational data on covariates and outcomes from RCT nonparticipants. For example, data from A/B tests conducted within an educational technology platform exist alongside historical observational data drawn from student logs. We outline a design-based approach to using such observational data for variance reduction in RCTs. First, we use the observational data to train a machine learning algorithm predicting potential outcomes using covariates and then use that algorithm to generate predictions for RCT participants. Then, we use those predictions, perhaps alongside other covariates, to adjust causal effect estimates with a flexible, design-based covariate-adjustment routine. In this way, there is no danger of biases from the observational data leaking into the experimental estimates, which are guaranteed to be exactly unbiased regardless of whether the machine learning models are “correct” in any sense or whether the observational samples closely resemble RCT samples. We demonstrate the method in analyzing 33 randomized A/B tests and show that it decreases standard errors relative to other estimators, sometimes substantially.
-
Randomized controlled trials (RCTs) are increasingly prevalent in education research, and are often regarded as a gold standard of causal inference. Two main virtues of randomized experiments are that they (1) do not suffer from confounding, thereby allowing for an unbiased estimate of an intervention's causal impact, and (2) allow for design-based inference, meaning that the physical act of randomization largely justifies the statistical assumptions made. However, RCT sample sizes are often small, leading to low precision; in many cases RCT estimates may be too imprecise to guide policy or inform science. Observational studies, by contrast, have strengths and weaknesses complementary to those of RCTs. Observational studies typically offer much larger sample sizes, but may suffer confounding. In many contexts, experimental and observational data exist side by side, allowing the possibility of integrating "big observational data" with "small but high-quality experimental data" to get the best of both. Such approaches hold particular promise in the field of education, where RCT sample sizes are often small due to cost constraints, but automatic collection of observational data, such as in computerized educational technology applications, or in state longitudinal data systems (SLDS) with administrative data on hundreds of thousand of students, has made rich, high-dimensional observational data widely available. We outline an approach that allows one to employ machine learning algorithms to learn from the observational data, and use the resulting models to improve precision in randomized experiments. Importantly, there is no requirement that the machine learning models are "correct" in any sense, and the final experimental results are guaranteed to be exactly unbiased. Thus, there is no danger of confounding biases in the observational data leaking into the experiment.more » « less
-
Randomized A/B tests in educational software are not run in a vacuum: often, reams of historical data are available alongside the data from a randomized trial. This paper proposes a method to use this historical data–often high dimensional and longitudinal–to improve causal estimates from A/B tests. The method proceeds in two steps: first, fit a machine learning model to the historical data predicting students’ outcomes as a function of their covariates. Then, use that model to predict the outcomes of the randomized students in the A/B test. Finally, use design-based methods to estimate the treatment effect in the A/B test, using prediction errors in place of outcomes. This method retains all of the advantages of design-based inference, while, under certain conditions, yielding more precise estimators. This paper will give a theoretical condition under which the method improves statistical precision, and demonstrates it using a deep learning algorithm to help estimate effects in a set of experiments run inside ASSISTments.more » « less