Abstract Randomized controlled trials (RCTs) admit unconfounded design-based inference – randomization largely justifies the assumptions underlying statistical effect estimates – but often have limited sample sizes. However, researchers may have access to big observational data on covariates and outcomes from RCT nonparticipants. For example, data from A/B tests conducted within an educational technology platform exist alongside historical observational data drawn from student logs. We outline a design-based approach to using such observational data for variance reduction in RCTs. First, we use the observational data to train a machine learning algorithm predicting potential outcomes using covariates and then use that algorithm to generate predictions for RCT participants. Then, we use those predictions, perhaps alongside other covariates, to adjust causal effect estimates with a flexible, design-based covariate-adjustment routine. In this way, there is no danger of biases from the observational data leaking into the experimental estimates, which are guaranteed to be exactly unbiased regardless of whether the machine learning models are “correct” in any sense or whether the observational samples closely resemble RCT samples. We demonstrate the method in analyzing 33 randomized A/B tests and show that it decreases standard errors relative to other estimators, sometimes substantially.
more »
« less
Precise Unbiased Estimation in Randomized Experiments using Auxiliary Observational Data
Randomized controlled trials (RCTs) are increasingly prevalent in education research, and are often regarded as a gold standard of causal inference. Two main virtues of randomized experiments are that they (1) do not suffer from confounding, thereby allowing for an unbiased estimate of an intervention's causal impact, and (2) allow for design-based inference, meaning that the physical act of randomization largely justifies the statistical assumptions made. However, RCT sample sizes are often small, leading to low precision; in many cases RCT estimates may be too imprecise to guide policy or inform science. Observational studies, by contrast, have strengths and weaknesses complementary to those of RCTs. Observational studies typically offer much larger sample sizes, but may suffer confounding. In many contexts, experimental and observational data exist side by side, allowing the possibility of integrating "big observational data" with "small but high-quality experimental data" to get the best of both. Such approaches hold particular promise in the field of education, where RCT sample sizes are often small due to cost constraints, but automatic collection of observational data, such as in computerized educational technology applications, or in state longitudinal data systems (SLDS) with administrative data on hundreds of thousand of students, has made rich, high-dimensional observational data widely available. We outline an approach that allows one to employ machine learning algorithms to learn from the observational data, and use the resulting models to improve precision in randomized experiments. Importantly, there is no requirement that the machine learning models are "correct" in any sense, and the final experimental results are guaranteed to be exactly unbiased. Thus, there is no danger of confounding biases in the observational data leaking into the experiment.
more »
« less
- Award ID(s):
- 1931523
- PAR ID:
- 10443580
- Date Published:
- Journal Name:
- Journal of Causal Inference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Randomized A/B tests within online learning platforms represent an exciting direction in learning sciences. With minimal assumptions, they allow causal effect estimation without confounding bias and exact statistical inference even in small samples. However, often experimental samples and/or treatment effects are small, A/B tests are underpowered, and effect estimates are overly imprecise. Recent methodological advances have shown that power and statistical precision can be substantially boosted by coupling design-based causal estimation to machine-learning models of rich log data from historical users who were not in the experiment. Estimates using these techniques remain unbiased and inference remains exact without any additional assumptions. This paper reviews those methods and applies them to a new dataset including over 250 randomized A/B comparisons conducted within ASSISTments, an online learning platform. We compare results across experiments using four novel deep-learning models of auxiliary data and show that incorporating auxiliary data into causal estimates is roughly equivalent to increasing the sample size by 20% on average, or as much as 50-80% in some cases, relative to t-tests, and by about 10% on average, or as much as 30-50%, compared to cutting-edge machine learning unbiased estimates that use only data from the experiments. We show that the gains can be even larger for estimating subgroup effects, hold even when the remnant is unrepresentative of the A/B test sample, and extend to post-stratification population effects estimators.more » « less
-
Randomized A/B tests within online learning platforms represent an exciting direction in learning sci- ences. With minimal assumptions, they allow causal effect estimation without confounding bias and exact statistical inference even in small samples. However, often experimental samples and/or treat- ment effects are small, A/B tests are under-powered, and effect estimates are overly imprecise. Recent methodological advances have shown that power and statistical precision can be substantially boosted by coupling design-based causal estimation to machine-learning models of rich log data from historical users who were not in the experiment. Estimates using these techniques remain unbiased and inference remains exact without any additional assumptions. This paper reviews those methods and applies them to a new dataset including over 250 randomized A/B comparisons conducted within ASSISTments, an online learning platform. We compare results across experiments using four novel deep-learning models of auxiliary data, and show that incorporating auxiliary data into causal estimates is roughly equivalent to increasing the sample size by 20% on average, or as much as 50-80% in some cases, relative to t-tests, and by about 10% on average, or as much as 30-50%, compared to cutting-edge machine learning unbiased estimates that use only data from the experiments. We show the gains can be even larger for estimating subgroup effects, that they hold even when the remnant is unrepresentative of the A/B test sample, and extend to post-stratification population effects estimators.more » « less
-
Randomized A/B tests within online learning platforms represent an exciting direction in learning sciences. With minimal assumptions, they allow causal effect estimation without confounding bias and exact statistical inference even in small samples. However, often experimental samples and/or treatment effects are small, A/B tests are under-powered, and effect estimates are overly imprecise. Recent methodological advances have shown that power and statistical precision can be substantially boosted by coupling design-based causal estimation to machine-learning models of rich log data from historical users who were not in the experiment. Estimates using these techniques remain unbiased and inference remains exact without any additional assumptions. This paper reviews those methods and applies them to a new dataset including over 250 randomized A/B comparisons conducted within ASSISTments, an online learning platform. We compare results across experiments using four novel deep-learning models of auxiliary data, and show that incorporating auxiliary data into causal estimates is roughly equivalent to increasing the sample size by 20% on average, or as much as 50-80% in some cases, relative to t-tests, and by about 10% on average, or as much as 30-50%, compared to cutting-edge machine learning unbiased estimates that use only data from the experiments. We show the gains can be even larger for estimating subgroup effects, that they hold even when the remnant is unrepresentative of the A/B test sample, and extend to post-stratification population effects estimators.more » « less
-
Gentle, James; Scott, David (Ed.)Recent years have seen an explosion in methodological work on combining causal effects estimated from observational and experimental datasets. Observational data have the advantage of being inexpensive and increasingly available from sources such as electronic health records, insurance claims databases, and online learning platforms. These data are representative of target populations, but because treatment assignments are not randomized, they suffer from unmeasured confounding bias. By contrast, as a consequence of randomization, experimental data yield unbiased causal effects. Yet experiments are costly, often involve relatively few units, and may incorporate stringent inclusion criteria that make the studied populations somewhat artificial. A challenge for researchers is how to integrate these two types of data to leverage their respective virtues. Over roughly the past 5 years, many novel approaches have been proposed. As in this review, we restrict our focus to techniques for integrating individual‐level experimental and observational data, without assuming all confounding variables are studied in the observational data. We first “locate” the problem by detailing important considerations from the causal inference and transportability literature. We next discuss three important research traditions that predate modern methodological work: meta‐analysis, Empirical Bayes shrinkage, and historical borrowing. In organizing the growing literature on data‐combination methods, we use a categorization involving five distinct approaches: auxiliary methods, control‐arm augmentation, debiasing, test‐then‐merge, and weighting. Within each category, we summarize recently proposed methodologies, highlighting the strengths and weaknesses of each. We conclude with a discussion of how practitioners might choose between competing approaches when conducting applied work.more » « less
An official website of the United States government

