skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: iMOST: An IoT Framework for Energy Efficient Street Lights
The amount of greenhouse gas emissions from streetlights is equivalent to 2.6 million cars with as many as 26 million streetlights in the United States. The proposed IoT controller integrates sensors to make these streetlights as hubs for smart environment monitoring with effective energy usage. Conservation of energy is one of the main concerns in the modern era, and energy coming from the sun can be utilized efficiently alongside a smart streetlight management system instead of conventional streetlight management techniques. Additionally, with streetlights being present throughout a city, the opportunity to collect city-wide weather data is proposed. To this end, a solar-powered IoT-based smart street lighting and environmental monitoring system is proposed. The proposed energy-efficient IoT-based system uses a microcontroller to control light-emitting diode (LED) streetlights depending on lighting conditions and vehicle detection, ensuring that the streetlights can be turned on when needed.  more » « less
Award ID(s):
1924117
PAR ID:
10451152
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2022 IEEE 8th World Forum on Internet of Things (WF-IoT)
Page Range / eLocation ID:
1 to 2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Collecting, storing, and providing access to Internet of Things (IoT) data are fundamental tasks to many smart city projects. However, developing and integrating IoT systems is still a significant barrier to entry. In this work, we share insights on the development of cloud data storage and visualization tools for IoT smart city applications using flood warning as an example application. The developed system incorporates scalable, autonomous, and inexpensive features that allow users to monitor real-time environmental conditions, and to create threshold-based alert notifications. Built in Amazon Web Services (AWS), the system leverages serverless technology for sensor data backup, a relational database for data management, and a graphical user interface (GUI) for data visualizations and alerts. A RESTful API allows for easy integration with web-based development environments, such as Jupyter notebooks, for advanced data analysis. The system can ingest data from LoRaWAN sensors deployed using The Things Network (TTN). A cost analysis can support users’ planning and decision-making when deploying the system for different use cases. A proof-of-concept demonstration of the system was built with river and weather sensors deployed in a flood prone suburban watershed in the city of Charlottesville, Virginia. 
    more » « less
  2. The concept of City 2.0 or smart city is offering new opportunities for handling waste management practices. The existing studies have started addressing waste management problems in smart cities mainly by focusing on the design of new sensor-based Internet of Things (IoT) technologies, and optimizing the routes for waste collection trucks with the aim of minimizing operational costs, energy consumption and transportation pollution emissions. In this study, the importance of value recovery from trash bins is highlighted. A stochastic optimization model based on chance-constrained programming is developed to optimize the planning of waste collection operations. The objective of the proposed optimization model is to minimize the total transportation cost while maximizing the recovery of value still embedded in waste bins. The value of collected waste is modeled as an uncertain parameter to reflect the uncertain value that can be recovered from each trash bin due to the uncertain condition and quality of waste. The application of the proposed model is shown by using a numerical example. The study opens new venues for incorporating the value recovery aspect into waste collection planning and development of new data acquisition technologies that enable municipalities to monitor the mix of recyclables embedded in individual trash bins. 
    more » « less
  3. null (Ed.)
    Smart city projects have the potential to improve the management of environmental and public infrastructure. However, the operational and capital expenditures of smart cities can prevent cities from becoming smarter. A notable factor that influences the cost is providing cellular Internet connectivity to IoT devices. 5G has been proposed as a possible solution, but projections show that 5G will not be able to support the load of billions of IoT devices coming online. To mitigate this, people, vehicles, and other nodes in transportation networks can be exploited to transmit non-urgent data by leveraging device-to-device communication in order to reduce cellular connectivity costs associated with smart city sensors. Hence, this paper addresses cost-effective edge node placement in smart cities that opportunistically leverage public transit networks. We introduce an algorithm that selects a set of edge nodes that provide minimal delivery delay within a budget. The algorithm is evaluated for two public transit network data-sets: Chapel Hill, North Carolina and Louisville, Kentucky and results show that our algorithm outperforms betweeness and in-degree centrality metrics with a reduction in latency of over 20 minutes. 
    more » « less
  4. null (Ed.)
    Internet of Things (IoT) has facilitated the connection of many smart devices via internet. Recent cyberattacks have shown that resource constrained IoT nodes are easy prey that lead towards compromising the secrecy of the data and vulnerabilities could be exploited remotely to take control of safety-critical systems. Photoresistor sensors have applications in IoT systems, such as smart street lighting, intelligent cameras, light activated smart consumer electronics, smart home, smart healthcare, etc. Building hardware security primitives, such as True Random Number Generator (TRNG), based on the intrinsic properties of photoresistor would be a novel direction to develop cost-savvy IoT security primitives. Therefore, this paper proposes a TRNG prototype that is devised from uncertainty presents in photoresistor sensors. The proposed TRNG prototype does not require any complex interfacing for preprocessing the weak signal, thereby reducing the unnecessary delay and the recurring hardware cost. The proposed prototype employs the novel approach of additive scrambling that aids to sample sensors at a higher rate. The proposed TRNG has an average random bit generation rate of 8 kbps that is better than the recent work in the literature. The quality of randomness was validated by 15 test batteries of NIST STS test. 
    more » « less
  5. Recent advances in cyber-physical systems, artificial intelligence, and cloud computing have driven the wide deployments of Internet-of-things (IoT) in smart homes. As IoT devices often directly interact with the users and environments, this paper studies if and how we could explore the collective insights from multiple heterogeneous IoT devices to infer user activities for home safety monitoring and assisted living. Specifically, we develop a new system, namely IoTMosaic, to first profile diverse user activities with distinct IoT device event sequences, which are extracted from smart home network traffic based on their TCP/IP data packet signatures. Given the challenges of missing and out-of-order IoT device events due to device malfunctions or varying network and system latencies, IoTMosaic further develops simple yet effective approximate matching algorithms to identify user activities from real-world IoT network traffic. Our experimental results on thousands of user activities in the smart home environment over two months show that our proposed algorithms can infer different user activities from IoT network traffic in smart homes with the overall accuracy, precision, and recall of 0.99, 0.99, and 1.00, respectively. 
    more » « less