skip to main content


Title: A Latency-Defined Edge Node Placement Scheme for Opportunistic Smart Cities
Smart city projects have the potential to improve the management of environmental and public infrastructure. However, the operational and capital expenditures of smart cities can prevent cities from becoming smarter. A notable factor that influences the cost is providing cellular Internet connectivity to IoT devices. 5G has been proposed as a possible solution, but projections show that 5G will not be able to support the load of billions of IoT devices coming online. To mitigate this, people, vehicles, and other nodes in transportation networks can be exploited to transmit non-urgent data by leveraging device-to-device communication in order to reduce cellular connectivity costs associated with smart city sensors. Hence, this paper addresses cost-effective edge node placement in smart cities that opportunistically leverage public transit networks. We introduce an algorithm that selects a set of edge nodes that provide minimal delivery delay within a budget. The algorithm is evaluated for two public transit network data-sets: Chapel Hill, North Carolina and Louisville, Kentucky and results show that our algorithm outperforms betweeness and in-degree centrality metrics with a reduction in latency of over 20 minutes.  more » « less
Award ID(s):
1952181
NSF-PAR ID:
10301997
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops)
Page Range / eLocation ID:
142 to 147
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Smart city projects aim to enhance the management of city infrastructure by enabling government entities to monitor, control and maintain infrastructure efficiently through the deployment of Internet-of-things (IoT) devices. However, the financial burden associated with smart city projects is a detriment to prospective smart cities. A noteworthy factor that impacts the cost and sustainability of smart city projects is providing cellular Internet connectivity to IoT devices. In response to this problem, this paper explores the use of public transportation network nodes and mules, such as bus-stops as buses, to facilitate connectivity via device-to-device communication in order to reduce cellular connectivity costs within a smart city. The data mules convey non-urgent data from IoT devices to edge computing hardware, where data can be processed or sent to the cloud. Consequently, this paper focuses on edge node placement in smart cities that opportunistically leverage public transit networks for reducing reliance on and thus costs of cellular connectivity. We introduce an algorithm that selects a set of edge nodes that provides maximal sensor coverage and explore another that selects a set of edge nodes that provide minimal delivery delay within a budget. The algorithms are evaluated for two public transit network data-sets: Chapel Hill, North Carolina and Louisville, Kentucky. Results show that our algorithms consistently outperform edge node placement strategies that rely on traditional centrality metrics (betweenness and in-degree centrality) by over 77% reduction in coverage budget and over 20 minutes reduction in latency. 
    more » « less
  2. The smart parking industry continues to evolve as an increasing number of cities struggle with traffic congestion and inadequate parking availability. For urban dwellers, few things are more irritating than anxiously searching for a parking space. Research results show that as much as 30% of traffic is caused by drivers driving around looking for parking spaces in congested city areas. There has been considerable activity among researchers to develop smart technologies that can help drivers find a parking spot with greater ease, not only reducing traffic congestion but also the subsequent air pollution. Many existing solutions deploy sensors in every parking spot to address the automatic parking spot detection problems. However, the device and deployment costs are very high, especially for some large and old parking structures. A wide variety of other technological innovations are beginning to enable more adaptable systems-including license plate number detection, smart parking meter, and vision-based parking spot detection. In this paper, we propose to design a more adaptable and affordable smart parking system via distributed cameras, edge computing, data analytics, and advanced deep learning algorithms. Specifically, we deploy cameras with zoom-lens and motorized head to capture license plate numbers by tracking the vehicles when they enter or leave the parking lot; cameras with wide angle fish-eye lens will monitor the large parking lot via our custom designed deep neural network. We further optimize the algorithm and enable the real-time deep learning inference in an edge device. Through the intelligent algorithm, we can significantly reduce the cost of existing systems, while achieving a more adaptable solution. For example, our system can automatically detect when a car enters the parking space, the location of the parking spot, and precisely charge the parking fee and associate this with the license plate number. 
    more » « less
  3. Rapid advancements in the fifth generation (5G) communication technology and mobile edge computing (MEC) paradigm have led to the proliferation of unmanned aerial vehicles (UAV) in urban air mobility (UAM) networks, which provide intelligent services for diversified smart city scenarios. Meanwhile, the widely deployed Internet of drones (IoD) in smart cities has also brought up new concerns regarding performance, security, and privacy. The centralized framework adopted by conventional UAM networks is not adequate to handle high mobility and dynamicity. Moreover, it is necessary to ensure device authentication, data integrity, and privacy preservation in UAM networks. Thanks to its characteristics of decentralization, traceability, and unalterability, blockchain is recognized as a promising technology to enhance security and privacy for UAM networks. In this paper, we introduce LightMAN, a lightweight microchained fabric for data assurance and resilience-oriented UAM networks. LightMAN is tailored for small-scale permissioned UAV networks, in which a microchain acts as a lightweight distributed ledger for security guarantees. Thus, participants are enabled to authenticate drones and verify the genuineness of data that are sent to/from drones without relying on a third-party agency. In addition, a hybrid on-chain and off-chain storage strategy is adopted that not only improves performance (e.g., latency and throughput) but also ensures privacy preservation for sensitive information in UAM networks. A proof-of-concept prototype is implemented and tested on a micro-air–vehicle link (MAVLink) simulator. The experimental evaluation validates the feasibility and effectiveness of the proposed LightMAN solution. 
    more » « less
  4. Support for connected and autonomous vehicles (CAVs) is a major use case of 5G networks. Due to their large from factors, CAVs can be equipped with multiple radio antennas, cameras, LiDAR and other sensors. In other words, they are "giant" mobile integrated communications and sensing devices. The data collected can not only facilitate edge-assisted autonomous driving, but also enable intelligent radio resource allocation by cellular networks. In this paper we conduct an initial study to assess the feasibility of delivering multi-modal sensory data collected by vehicles over emerging commercial 5G networks. We carried out an "in-the-wild" drive test and data collection campaign between Minneapolis and Chicago using a vehicle equipped with a 360° camera, a LiDAR device, multiple smart phones and a professional 5G network measurement tool. Using the collected multi-modal data, we conduct trace-driven experiments in a local streaming testbed to analyze the requirements and performance of streaming multi-modal sensor data over existing 4G/5G networks. We reveal several notable findings and point out future research directions. 
    more » « less
  5. Internet of Things (IoT), edge/fog computing, and the cloud are fueling rapid development in smart connected cities. Given the increasing rate of urbanization, the advancement of these technologies is a critical component of mitigating demand on already constrained transportation resources. Smart transportation systems are most effectively implemented as a decentralized network, in which traffic sensors send data to small low-powered devices called Roadside Units (RSUs). These RSUs host various computation and networking services. Data driven applications such as optimal routing require precise real-time data, however, data-driven approaches are susceptible to data integrity attacks. Therefore we propose a multi-tiered anomaly detection framework which utilizes spare processing capabilities of the distributed RSU network in combination with the cloud for fast, real-time detection. In this paper we present a novel real time anomaly detection framework. Additionally, we focus on implementation of our framework in smart-city transportation systems by providing a constrained clustering algorithm for RSU placement throughout the network. Extensive experimental validation using traffic data from Nashville, TN demonstrates that the proposed methods significantly reduce computation requirements while maintaining similar performance to current state of the art anomaly detection methods. 
    more » « less