Abstract To date, many AI initiatives (eg, AI4K12, CS for All) developed standards and frameworks as guidance for educators to create accessible and engaging Artificial Intelligence (AI) learning experiences for K‐12 students. These efforts revealed a significant need to prepare youth to gain a fundamental understanding of how intelligence is created, applied, and its potential to perpetuate bias and unfairness. This study contributes to the growing interest in K‐12 AI education by examining student learning of modelling real‐world text data. Four students from an Advanced Placement computer science classroom at a public high school participated in this study. Our qualitative analysis reveals that the students developed nuanced and in‐depth understandings of how text classification models—a type of AI application—are trained. Specifically, we found that in modelling texts, students: (1) drew on their social experiences and cultural knowledge to create predictive features, (2) engineered predictive features to address model errors, (3) described model learning patterns from training data and (4) reasoned about noisy features when comparing models. This study contributes to an initial understanding of student learning of modelling unstructured data and offers implications for scaffolding in‐depth reasoning about model decision making. Practitioner notesWhat is already known about this topicScholarly attention has turned to examining Artificial Intelligence (AI) literacy in K‐12 to help students understand the working mechanism of AI technologies and critically evaluate automated decisions made by computer models.While efforts have been made to engage students in understanding AI through building machine learning models with data, few of them go in‐depth into teaching and learning of feature engineering, a critical concept in modelling data.There is a need for research to examine students' data modelling processes, particularly in the little‐researched realm of unstructured data.What this paper addsResults show that students developed nuanced understandings of models learning patterns in data for automated decision making.Results demonstrate that students drew on prior experience and knowledge in creating features from unstructured data in the learning task of building text classification models.Students needed support in performing feature engineering practices, reasoning about noisy features and exploring features in rich social contexts that the data set is situated in.Implications for practice and/or policyIt is important for schools to provide hands‐on model building experiences for students to understand and evaluate automated decisions from AI technologies.Students should be empowered to draw on their cultural and social backgrounds as they create models and evaluate data sources.To extend this work, educators should consider opportunities to integrate AI learning in other disciplinary subjects (ie, outside of computer science classes).
more »
« less
Informing Expert Feature Engineering through Automated Approaches: Implications for Coding Qualitative Classroom Video Data
While classroom video data are detailed sources for mining student learning insights, their complex and unstructured nature makes them less than straightforward for researchers to analyze. In this paper, we compared the differences between the processes of expert- informed manual feature engineering and automated feature engi- neering using positional data for predicting student group interac- tion in four middle school and high school mathematics classroom videos. Our results highlighted notable differences, including im- proved model accuracy for the combined (manual features + au- tomated features) models compared to the only-manual-features models (mean AUC = .778 vs. .706) at the cost of feature interpretabil- ity, increased number of features for automated feature engineering (1523 vs. 178), and engineering approach (domain-agnostic in au- tomated vs. domain-knowledge-informed in manual). We carried out feature importance analyses and discuss the implications of the results for potentially augmenting human perspectives about quali- tatively coding classroom video data by confirming and expanding views on which body areas and characteristics may be relevant to the target interaction behavior. Lastly, we discuss our study’s limitations and future work.
more »
« less
- Award ID(s):
- 1920796
- PAR ID:
- 10451181
- Date Published:
- Journal Name:
- LAK23: 13th International Learning Analytics and Knowledge Conference (LAK 2023)
- Page Range / eLocation ID:
- 630 to 636
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The effectiveness of user interfaces are limited by the tendency for the human mind to wander. Intelligent user interfaces can combat this by detecting when mind wandering occurs and attempting to regain user attention through a variety of intervention strategies. However, collecting data to build mind wandering detection models can be expensive, especially considering the variety of media available and potential differences in mind wandering across them. We explored the possibility of using eye gaze to build cross-domain models of mind wandering where models trained on data from users in one domain are used for different users in another domain. We built supervised classification models using a dataset of 132 users whose mind wandering reports were collected in response to thought-probes while they completed tasks from seven different domains for six minutes each (five domains are investigated here: Illustrated Text, Narrative Film, Video Lecture, Naturalistic Scene, and Reading Text). We used global eye gaze features to build within- and cross- domain models using 5-fold user-independent cross validation. The best performing within-domain models yielded AUROCs ranging from .57 to .72, which were comparable for the cross-domain models (AUROCs of .56 to .68). Models built from coarse-grained locality features capturing the spatial distribution of gaze resulted in slightly better transfer on average (transfer ratios of .61 vs .54 for global models) due to improved performance in certain domains. Instance-based and feature-level domain adaptation did not result in any improvements in transfer. We found that seven gaze features likely contributed to transfer as they were among the top ten features for at least four domains. Our results indicate that gaze features are suitable for domain adaptation from similar domains, but more research is needed to improve domain adaptation between more dissimilar domains.more » « less
-
Abstract Deep generative models have shown significant promise in improving performance in design space exploration. But there is limited understanding of their interpretability, a necessity when model explanations are desired and problems are ill-defined. Interpretability involves learning design features behind design performance, called designer learning. This study explores human–machine collaboration’s effects on designer learning and design performance. We conduct an experiment (N = 42) designing mechanical metamaterials using a conditional variational autoencoder. The independent variables are: (i) the level of automation of design synthesis, e.g., manual (where the user manually manipulates design variables), manual feature-based (where the user manipulates the weights of the features learned by the encoder), and semi-automated feature-based (where the agent generates a local design based on a start design and user-selected step size); and (ii) feature semanticity, e.g., meaningful versus abstract features. We assess feature-specific learning using item response theory and design performance using utopia distance and hypervolume improvement. The results suggest that design performance depends on the subjects’ feature-specific knowledge, emphasizing the precursory role of learning. The semi-automated synthesis locally improves the utopia distance. Still, it does not result in higher global hypervolume improvement compared to manual design synthesis and reduced designer learning compared to manual feature-based synthesis. The subjects learn semantic features better than abstract features only when design performance is sensitive to them. Potential cognitive constructs influencing learning in human–machine collaborative settings are discussed, such as cognitive load and recognition heuristics.more » « less
-
Online classes are typically conducted by using video conferencing software such as Zoom, Microsoft Teams, and Google Meet. Research has identified drawbacks of online learning, such as “Zoom fatigue”, characterized by distractions and lack of engagement. This study presents the CUNY Affective and Responsive Virtual Environment (CARVE) Hub, a novel virtual reality hub that uses a facial emotion classification model to generate emojis for affective and informal responsive interaction in a 3D virtual classroom setting. A web-based machine learning model is employed for facial emotion classification, enabling students to communicate four basic emotions live through automated web camera capture in a virtual classroom without activating their cameras. The experiment is conducted in undergraduate classes on both Zoom and CARVE, and the results of a survey indicate that students have a positive perception of interactions in the proposed virtual classroom compared with Zoom. Correlations between automated emojis and interactions are also observed. This study discusses potential explanations for the improved interactions, including a decrease in pressure on students when they are not showing faces. In addition, video panels in traditional remote classrooms may be useful for communication but not for interaction. Students favor features in virtual reality, such as spatial audio and the ability to move around, with collaboration being identified as the most helpful feature.more » « less
-
This paper presents Serval, a framework for developing au- tomated verifiers for systems software. Serval provides an extensible infrastructure for creating verifiers by lifting interpreters under symbolic evaluation, and a systematic approach to identifying and repairing verification performance bottlenecks using symbolic profiling and optimizations. Using Serval, we build automated verifiers for the RISC-V, x86-32, LLVM, and BPF instruction sets. We report our experience of retrofitting CertiKOS and Komodo, two systems previously verified using Coq and Dafny, respectively, for automated verification using Serval, and discuss trade-offs of different verification methodologies. In addition, we apply Serval to the Keystone security monitor and the BPF compil- ers in the Linux kernel, and uncover 18 new bugs through verification, all confirmed and fixed by developers.more » « less
An official website of the United States government

