skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Associations between rurality and regional differences in sociodemographic factors and the 1918–20 influenza and 2020–21 COVID-19 pandemics in Missouri counties: An ecological study
This study compares pandemic experiences of Missouri’s 115 counties based on rurality and sociodemographic characteristics during the 1918–20 influenza and 2020–21 COVID-19 pandemics. The state’s counties and overall population distribution have remained relatively stable over the last century, which enables identification of long-lasting pandemic attributes. Sociodemographic data available at the county level for both time periods were taken from U.S. census data and used to create clusters of similar counties. Counties were also grouped by rural status (RSU), including fully (100%) rural, semirural (1–49% living in urban areas), and urban (>50% of the population living in urban areas). Deaths from 1918 through 1920 were collated from the Missouri Digital Heritage database and COVID-19 cases and deaths were downloaded from the Missouri COVID-19 dashboard. Results from sociodemographic analyses indicate that, during both time periods, average farm value, proportion White, and literacy were the most important determinants of sociodemographic clusters. Furthermore, the Urban/Central and Southeastern regions experienced higher mortality during both pandemics than did the North and South. Analyses comparing county groups by rurality indicated that throughout the 1918–20 influenza pandemic, urban counties had the highest and rural had the lowest mortality rates. Early in the 2020–21 COVID-19 pandemic, urban counties saw the most extensive epidemic spread and highest mortality, but as the epidemic progressed, cumulative mortality became highest in semirural counties. Additional results highlight the greater effects both pandemics had on county groups with lower rates of education and a lower proportion of Whites in the population. This was especially true for the far southeastern counties of Missouri (“the Bootheel”) during the COVID-19 pandemic. These results indicate that rural-urban and socioeconomic differences in health outcomes are long-standing problems that continue to be of significant importance, even though the overall quality of health care is substantially better in the 21 st century.  more » « less
Award ID(s):
2031703
PAR ID:
10451295
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Acharya, Binod
Date Published:
Journal Name:
PLOS ONE
Volume:
18
Issue:
8
ISSN:
1932-6203
Page Range / eLocation ID:
e0290294
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kim, Andrew; Agarwal, Sabrina (Ed.)
    Objectives: Pandemics have profoundly impacted human societies, but until rela- tively recently were a minor research focus within biological anthropology, especially within biocultural analyses. Here, we explore research in these fields, including molecular anthropology, that employs biocultural approaches, sometimes integrated with intersectionality and ecosocial and syndemic theory, to unpack relationships between social inequality and pandemics. A case study assesses the 1918 influenza pandemic's impacts on the patient population of the Mississippi State Asylum (MSA). Materials and Methods: We survey bioarchaeological and paleopathological litera- ture on pandemics and analyze respiratory disease mortality relative to sex, age, and social race amongst patient deaths (N = 2258) between 1912 and 1925. Logistic regression models were used to assess relationships between cause of death and odds of death during the pandemic (1918–1919). Results: Findings include substantial respiratory mortality during the pandemic, including from influenza and influenza syndemic with pneumonia. Older patients (40–59 years, 60+ years) had lower odds (p < 0.01) of dying from respiratory disease than younger patients, as did female patients compared to males (p < 0.05). Age pat- terns are broadly consistent with national and state trends, while elevated mortality amongst Black and/or African American patients may reflect intersections between gender roles and race-based structural violence in the Jim Crow South. Discussion: Future work in biological anthropology on past pandemics may benefit from explicit incorporation of biocultural frameworks, intersectionality, and ecosocial and syndemic theory. Doing so enables holistic analyses of interactions between social context, social inequality and pandemic outcomes, generating data informative for public health responses and pandemic preparedness. 
    more » « less
  2. null (Ed.)
    Abstract Deaths are frequently under-estimated during emergencies, times when accurate mortality estimates are crucial for emergency response. This study estimates excess all-cause, pneumonia and influenza mortality during the coronavirus disease 2019 (COVID-19) pandemic using the 11 September 2020 release of weekly mortality data from the United States (U.S.) Mortality Surveillance System (MSS) from 27 September 2015 to 9 May 2020, using semiparametric and conventional time-series models in 13 states with high reported COVID-19 deaths and apparently complete mortality data: California, Colorado, Connecticut, Florida, Illinois, Indiana, Louisiana, Massachusetts, Michigan, New Jersey, New York, Pennsylvania and Washington. We estimated greater excess mortality than official COVID-19 mortality in the U.S. (excess mortality 95% confidence interval (CI) 100 013–127 501 vs. 78 834 COVID-19 deaths) and 9 states: California (excess mortality 95% CI 3338–6344) vs. 2849 COVID-19 deaths); Connecticut (excess mortality 95% CI 3095–3952) vs. 2932 COVID-19 deaths); Illinois (95% CI 4646–6111) vs. 3525 COVID-19 deaths); Louisiana (excess mortality 95% CI 2341–3183 vs. 2267 COVID-19 deaths); Massachusetts (95% CI 5562–7201 vs. 5050 COVID-19 deaths); New Jersey (95% CI 13 170–16 058 vs. 10 465 COVID-19 deaths); New York (95% CI 32 538–39 960 vs. 26 584 COVID-19 deaths); and Pennsylvania (95% CI 5125–6560 vs. 3793 COVID-19 deaths). Conventional model results were consistent with semiparametric results but less precise. Significant excess pneumonia deaths were also found for all locations and we estimated hundreds of excess influenza deaths in New York. We find that official COVID-19 mortality substantially understates actual mortality, excess deaths cannot be explained entirely by official COVID-19 death counts. Mortality reporting lags appeared to worsen during the pandemic, when timeliness in surveillance systems was most crucial for improving pandemic response. 
    more » « less
  3. The COVID-19 pandemic represents the most significant public health disaster since the 1918 influenza pandemic. During pandemics such as COVID-19, timely and reliable spatiotemporal forecasting of epidemic dynamics is crucial. Deep learning-based time series models for forecasting have recently gained popularity and have been successfully used for epidemic forecasting. Here we focus on the design and analysis of deep learning-based models for COVID-19 forecasting. We implement multiple recurrent neural network-based deep learning models and combine them using the stacking ensemble technique. In order to incorporate the effects of multiple factors in COVID-19 spread, we consider multiple sources such as COVID-19 confirmed and death case count data and testing data for better predictions. To overcome the sparsity of training data and to address the dynamic correlation of the disease, we propose clustering-based training for high-resolution forecasting. The methods help us to identify the similar trends of certain groups of regions due to various spatio-temporal effects. We examine the proposed method for forecasting weekly COVID-19 new confirmed cases at county-, state-, and country-level. A comprehensive comparison between different time series models in COVID-19 context is conducted and analyzed. The results show that simple deep learning models can achieve comparable or better performance when compared with more complicated models. We are currently integrating our methods as a part of our weekly forecasts that we provide state and federal authorities. 
    more » « less
  4. The objective is to understand the role of emerging variants, vaccination, and NPI policies on COVID-19 infections and deaths. We aim to identify scenarios in which COVID-19 can be managed such that the death rate from COVID-19 becomes comparable with the combined annual mortality rate from influenza and pneumonia. As a case study for a large urban area, we simulate COVID-19 transmission in King County, Washington, (greater Seattle) using an agent- based simulation model. Calibrated to local epidemiological data, our study uses detailed synthetic population data and includes interactions between vaccination and specific NPIs while considering waning immunity and emergence of variants. Virus mutation scenarios include 12 combinations of infectivity, disease severity, and immune evasiveness. A highly effective pancoronavirus vaccine that works against all strains is considered an optimistic scenario. Our findings highlight the potential benefits of pancoronavirus vaccines that offer enhanced and longer-lasting immunity. We emphasize the crucial role of nonpharmaceutical interventions in reducing COVID-19 deaths regardless of virus mutation scenarios. Owing to highly immune evasive and contagious SARS-CoV-2 variants, most scenarios in this study fail to reduce the mortality of COVID-19 to the level of influenza and pneumonia. However, our findings indicate that periodic vaccinations and a threshold nonpharmaceutical intervention policy may succeed in achieving this goal. This indicates the need for caution and vigilance in managing a continuing COVID-19 epidemic. 
    more » « less
  5. Abstract The large spatial scale, geographical overlap, and similarities in transmission mode between the 1918 H1N1 influenza and 2020 SARS-CoV-2 pandemics together provide a novel opportunity to investigate relationships between transmission of two different diseases in the same location. To this end, we use initial exponential growth rates in a Bayesian hierarchical framework to estimate the basic reproductive number, R0, of both disease outbreaks in a common set of 43 cities in the United States. By leveraging multiple epidemic time series across a large spatial area, we are able to better characterize the variation in R0 across the United States. Additionally, we provide one of the first city-level comparisons of R0 between these two pandemics and explore how demography and outbreak timing are related to R0. Despite similarities in transmission modes and a common set of locations, R0 estimates for COVID-19 were uncorrelated with estimates of pandemic influenza R0 in the same cities. Also, the relationships between R0 and key population or epidemic traits differed between diseases. For example, epidemics that started later tended to be less severe for COVID-19, while influenza epidemics exhibited an opposite pattern. Our results suggest that despite similarities between diseases, epidemics starting in the same location may differ markedly in their initial progression. 
    more » « less