skip to main content

Title: An energy-dependent electro-thermal response model of CUORE cryogenic calorimeter
Abstract The Cryogenic Underground Observatory for Rare Events (CUORE) is the most sensitive experiment searching for neutrinoless double-beta decay (0 νββ ) in 130 Te. CUORE uses a cryogenic array of 988 TeO 2 calorimeters operated at ∼10 mK with a total mass of 741 kg. To further increase the sensitivity, the detector response must be well understood. Here, we present a non-linear thermal model for the CUORE experiment on a detector-by-detector basis. We have examined both equilibrium and dynamic electro-thermal models of detectors by numerically fitting non-linear differential equations to the detector data of a subset of CUORE channels which are well characterized and representative of all channels. We demonstrate that the hot-electron effect and electric-field dependence of resistance in NTD-Ge thermistors alone are inadequate to describe our detectors' energy-dependent pulse shapes. We introduce an empirical second-order correction factor in the exponential temperature dependence of the thermistor, which produces excellent agreement with energy-dependent pulse shape data up to 6 MeV. We also present a noise analysis using the fitted thermal parameters and show that the intrinsic thermal noise is negligible compared to the observed noise for our detectors.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Journal of Instrumentation
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract CUPID is a next-generation bolometric experiment aiming at searching for neutrinoless double-beta decay with ∼250 kg of isotopic mass of 100 Mo. It will operate at ∼10 mK in a cryostat currently hosting a similar-scale bolometric array for the CUORE experiment at the Gran Sasso National Laboratory (Italy). CUPID will be based on large-volume scintillating bolometers consisting of 100 Mo-enriched Li 2 MoO 4 crystals, facing thin Ge-wafer-based bolometric light detectors. In the CUPID design, the detector structure is novel and needs to be validated. In particular, the CUORE cryostat presents a high level of mechanical vibrations due to the use of pulse tubes and the effect of vibrations on the detector performance must be investigated. In this paper we report the first test of the CUPID-design bolometric light detectors with NTD-Ge sensors in a dilution refrigerator equipped with a pulse tube in an above-ground lab. Light detectors are characterized in terms of sensitivity, energy resolution, pulse time constants, and noise power spectrum. Despite the challenging noisy environment due to pulse-tube-induced vibrations, we demonstrate that all the four tested light detectors comply with the CUPID goal in terms of intrinsic energy resolution of 100 eV RMS baseline noise. Indeed, we have measured 70–90 eV RMS for the four devices, which show an excellent reproducibility. We have also obtained high energy resolutions at the 356 keV line from a 133 Ba source, as good as Ge semiconductor γ detectors in this energy range. 
    more » « less
  2. TolTEC is an upcoming millimeter-wave imaging polarimeter designed to fill the focal plane of the 50-m-diameter Large Millimeter Telescope (LMT). Combined with the LMT, TolTEC will offer high-angular-resolution (5–10 ) simultaneous, polarization-sensitive observations in three wavelength bands: 1.1, 1.4, and 2.0 mm. Additionally, TolTEC will feature mapping speeds greater than 2 deg2∕mJy2∕h , thus enabling wider surveys of large-scale structure, galaxy evolution, and star formation. These improvements are only possible through the integration of approximately 7000 low-noise, high-responsivity superconducting Lumped Element Kinetic Inductance Detectors. Utilizing three focal planes of detector arrays requires the design, fabrication, and characterization of a unique, large-scale cryogenic system. Based on thermal models and expected photon loading, the focal planes must have a base operational temperature below 150 mK. To achieve this base temperature, TolTEC utilizes two cryocoolers, a Cryomech pulse tube cooler and an Oxford Instruments dilution refrigerator, to establish four thermal stages: 45 K, 4 K, 1 K, and 100 mK. During the design phase, we developed an object-oriented Python code to model the heat loading on each stage as well as the thermal gradients throughout the system. This model has allowed us to improve thermal gradients in the system as well as locate areas of poor thermal conductivity prior to ending a cooldown. The results of our model versus measurements from our cooldowns will be presented along with a detailed overview of TolTEC’s cryogenic system. We anticipate TolTEC to be commissioned at the LMT by Spring 2020. 
    more » « less
  3. Abstract CUPID will be a next generation experiment searching for the neutrinoless double $$\beta $$ β decay, whose discovery would establish the Majorana nature of the neutrino. Based on the experience achieved with the CUORE experiment, presently taking data at LNGS, CUPID aims to reach a background free environment by means of scintillating Li $$_{2}$$ 2 $$^{100}$$ 100 MoO $$_4$$ 4 crystals coupled to light detectors. Indeed, the simultaneous heat and light detection allows us to reject the dominant background of $$\alpha $$ α particles, as proven by the CUPID-0 and CUPID-Mo demonstrators. In this work we present the results of the first test of the CUPID baseline module. In particular, we propose a new optimized detector structure and light sensors design to enhance the engineering and the light collection, respectively. We characterized the heat detectors, achieving an energy resolution of (5.9 ± 0.2) keV FWHM at the Q -value of $$^{100}$$ 100 Mo (about 3034 keV). We studied the light collection of the baseline CUPID design with respect to an alternative configuration which features gravity-assisted light detectors’ mounting. In both cases we obtained an improvement in the light collection with respect to past measures and we validated the particle identification capability of the detector, which ensures an $$\alpha $$ α particle rejection higher than 99.9%, fully satisfying the requirements for CUPID. 
    more » « less
  4. Abstract

    The Cryogenic Underground Observatory for Rare Events (CUORE) is the first cryogenic experiment searching for$$0\nu \beta \beta $$0νββdecay that has been able to reach the one-tonne mass scale. The detector, located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, consists of an array of 988$${\mathrm{TeO}}_{2}$$TeO2crystals arranged in a compact cylindrical structure of 19 towers. CUORE began its first physics data run in 2017 at a base temperature of about 10 mK and in April 2021 released its$$3{\mathrm{rd}}$$3rdresult of the search for$$0\nu \beta \beta $$0νββ, corresponding to a tonne-year of$$\mathrm{TeO}_{2}$$TeO2exposure. This is the largest amount of data ever acquired with a solid state detector and the most sensitive measurement of$$0\nu \beta \beta $$0νββdecay in$${}^{130}\mathrm{Te}$$130Teever conducted . We present the current status of CUORE search for$$0\nu \beta \beta $$0νββwith the updated statistics of one tonne-yr. We finally give an update of the CUORE background model and the measurement of the$${}^{130}\mathrm{Te}$$130Te$$2\nu \beta \beta $$2νββdecay half-life and decay to excited states of$${}^{130}\mathrm{Xe}$$130Xe, studies performed using an exposure of 300.7 kg yr.

    more » « less
  5. The BICEP/Keck Collaboration is currently leading the quest to the highest sensitivity measurements of the polarized CMB anisotropies on degree scale with a series of cryogenic telescopes, of which BICEP Array is the latest Stage-3 upgrade with a total of ∼32,000 detectors. The instrument comprises 4 receivers spanning 30 to 270 GHz, with the low-frequency 30/40 GHz deployed to the South Pole Station in late 2019. The full complement of receivers is forecast to set the most stringent constraints on the tensor to scalar ratio r. Building on these advances, the overarching small-aperture telescope concept is already being used as the reference for further Stage-4 experiment design. In this paper I will present the development of the BICEP Array 150 GHz detector module and its fabrication requirements, with highlights on the high-density time division multiplexing (TDM) design of the cryogenic circuit boards. The low-impedance wiring required between the detectors and the first-stage SQUID amplifiers is crucial to maintain a stiff voltage bias on the detectors. A novel multi-layer FR4 Printed Circuit Board (PCB) with superconducting traces, capable of reading out up to 648 detectors, is presented along with its validation tests. I will also describe an ultra-high density TDM detector module we developed for a CMB-S4-like experiment that allows up to 1,920 detectors to be read out. TDM has been chosen as the detector readout technology for the Cosmic Microwave Background Stage-4 (CMB-S4) experiment based on its proven low-noise performance, predictable costs and overall maturity of the architecture. The heritage for TDM is rooted in mm- and submm-wave experiments dating back 20 years and has since evolved to support a multiplexing factor of 64x in Stage-3 experiments. 
    more » « less