- Award ID(s):
- 2232872
- NSF-PAR ID:
- 10451359
- Publisher / Repository:
- Purdue University Research Repository
- Date Published:
- Edition / Version:
- 1.0
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This paper quantifies and maps a spatially detailed and economically complete blue water footprint for the United States, utilizing the National Water Economy Database version 1.1 (NWED). NWED utilizes multiple mesoscale federal data resources from the United States Geological Survey (USGS), the United States Department of Agriculture (USDA), the U.S. Energy Information Administration (EIA), the U.S. Department of Transportation (USDOT), the U.S. Department of Energy (USDOE), and the U.S. Bureau of Labor Statistics (BLS) to quantify water use, economic trade, and commodity flows to construct this water footprint. Results corroborate previous studies in both the magnitude of the U.S. water footprint (F) and in the observed pattern of virtual water flows. The median water footprint (FCUMed) of the U.S. is 181 966 Mm3 (FWithdrawal: 400 844 Mm3; FCUMax: 222 144 Mm3; FCUMin: 61 117 Mm3) and the median per capita water footprint (F'CUMed) of the U.S. is 589 m3 capita−1 (F'Withdrawal: 1298 m3 capita−1; F'CUMax: 720 m3 capita−1; F'CUMin: 198 m3 capita−1). The U.S. hydro-economic network is centered on cities and is dominated by the local and regional scales. Approximately (58 %) of U.S. water consumption is for the direct and indirect use by cities. Further, the water footprint of agriculture and livestock is 93 % of the total U.S. water footprint, and is dominated by irrigated agriculture in the Western U.S. The water footprint of the industrial, domestic, and power economic sectors is centered on population centers, while the water footprint of the mining sector is highly dependent on the location of mineral resources. Owing to uncertainty in consumptive use coefficients alone, the mesoscale blue water footprint uncertainty ranges from 63 % to over 99 % depending on location. Harmonized region-specific, economic sector-specific consumption coefficients are necessary to reduce water footprint uncertainties and to better understand the human economy's water use impact on the hydrosphere.more » « less
-
Abstract. Urbanization and deforestation have important impacts on atmosphericparticulate matter (PM) over Amazonia. This study presents observations andanalysis of PM1 concentration, composition, and opticalproperties in central Amazonia during the dry season, focusing on theanthropogenic impacts. The primary study site was located 70 km downwind ofManaus, a city of over 2 million people in Brazil, as part of theGoAmazon2014/5 experiment. A high-resolution time-of-flight aerosol massspectrometer (AMS) provided data on PM1 composition, and aethalometermeasurements were used to derive the absorption coefficient babs,BrC ofbrown carbon (BrC) at 370 nm. Non-refractory PM1 mass concentrationsaveraged 12.2 µg m−3 at the primary study site, dominated byorganics (83 %), followed by sulfate (11 %). A decrease inbabs,BrC was observed as the mass concentration of nitrogen-containingorganic compounds decreased and the organic PM1 O:C ratio increased,suggesting atmospheric bleaching of the BrC components. The organic PM1was separated into six different classes by positive-matrix factorization(PMF), and the mass absorption efficiency Eabs associated with eachfactor was estimated through multivariate linear regression ofbabs,BrC on the factor loadings. The largest Eabs values wereassociated with urban (2.04±0.14 m2 g−1) and biomass-burning(0.82±0.04 to 1.50±0.07 m2 g−1) sources. Together, these sources contributed at least 80 % ofbabs,BrC while accounting for 30 % to 40 % of the organic PM1 massconcentration. In addition, a comparison of organic PM1 compositionbetween wet and dry seasons revealed that only part of the 9-foldincrease in mass concentration between the seasons can be attributed tobiomass burning. Biomass-burning factor loadings increased by 30-fold,elevating its relative contribution to organic PM1 from about 10 % inthe wet season to 30 % in the dry season. However, most of the PM1mass (>60 %) in both seasons was accounted for by biogenicsecondary organic sources, which in turn showed an 8-fold seasonalincrease in factor loadings. A combination of decreased wet deposition andincreased emissions and oxidant concentrations, as well as a positivefeedback on larger mass concentrations are thought to play a role in theobserved increases. Furthermore, fuzzy c-means clustering identified threeclusters, namely “baseline”, “event”, and “urban” to representdifferent pollution influences during the dry season. The baseline cluster,representing the dry season background, was associated with a mean massconcentration of 9±3 µg m−3. This concentration increasedon average by 3 µg m−3 for both the urban and the event clusters.The event cluster, representing an increased influence of biomass burningand long-range transport of African volcanic emissions, was characterized byremarkably high sulfate concentrations. The urban cluster, representing theinfluence of Manaus emissions on top of the baseline, was characterized byan organic PM1 composition that differed from the other two clusters.The differences discussed suggest a shift in oxidation pathways as well asan accelerated oxidation cycle due to urban emissions, in agreement withfindings for the wet season.
-
Abstract. Ocean-induced basal melting is directly and indirectly responsible for much of the Amundsen Sea Embayment ice loss in recent decades, but the total magnitude and spatiotemporal evolution of this melt is poorly constrained. To address this problem, we generated a record of high-resolution Digital Elevation Models (DEMs) for Pine Island Glacier (PIG) using commercial sub-meter satellite stereo imagery and integrated additional 2002–2015 DEM/altimetry data. We implemented a Lagrangian elevation change (Dh/Dt) framework to estimate ice shelf basal melt rates at 32–256-m resolution. We describe this methodology and consider basal melt rates and elevation change over the PIG shelf and lower catchment from 2008–2015. We document the evolution of Eulerian elevation change (dh/dt) and upstream propagation of thinning signals following the end of rapid grounding line retreat around 2010. Mean full-shelf basal melt rates for the 2008–2015 period were ~82–93 Gt/yr, with ~ 200–250 m/yr basal melt rates within large channels near the grounding line, ~ 10–30 m/yr over the main shelf, and ~ 0–10 m/yr over the North and South shelves, with the notable exception of a small area with rates of ~ 50–100 m/yr near the grounding line of a fast-flowing tributary on the South shelf. The observed basal melt rates show excellent agreement with, and provide context for, in situ basal melt rate observations. We also document the relative melt rates for km-scale basal channels and keels at different locations on the shelf and consider implications for ocean circulation and heat content. These methods and results offer new indirect observations of ice-ocean interaction and constraints on the processes driving sub-shelf melting beneath vulnerable ice shelves in West Antarctica.
-
Abstract. Radiation fogs at Summit Station, Greenland (72.58∘ N,38.48∘ W; 3210 m a.s.l.), are frequently reported by observers. Thefogs are often accompanied by fogbows, indicating the particles are composedof liquid; and because of the low temperatures at Summit, this liquid issupercooled. Here we analyze the formation of these fogs as well as theirphysical and radiative properties. In situ observations of particle size anddroplet number concentration were made using scattering spectrometers near 2 and 10 m height from 2012 to 2014. These data are complemented bycolocated observations of meteorology, turbulent and radiative fluxes, andremote sensing. We find that liquid fogs occur in all seasons with thehighest frequency in September and a minimum in April. Due to thecharacteristics of the boundary-layer meteorology, the fogs are elevated,forming between 2 and 10 m, and the particles then fall toward the surface.The diameter of mature particles is typically 20–25 µm in summer.Number concentrations are higher at warmer temperatures and, thus, higher insummer compared to winter. The fogs form at temperatures as warm as −5 ∘C, while the coldest form at temperatures approaching −40 ∘C. Facilitated by the elevated condensation, in winter two-thirds offogs occurred within a relatively warm layer above the surface when thenear-surface air was below −40 ∘C, as cold as −57 ∘C,which is too cold to support liquid water. This implies that fog particlessettling through this layer of cold air freeze in the air column beforecontacting the surface, thereby accumulating at the surface as ice withoutriming. Liquid fogs observed under otherwise clear skies annually imparted1.5 W m−2 of cloud radiative forcing (CRF). While this is a smallcontribution to the surface radiation climatology, individual events areinfluential. The mean CRF during liquid fog events was 26 W m−2, andwas sometimes much higher. An extreme case study was observed toradiatively force 5 ∘C of surface warming during the coldest partof the day, effectively damping the diurnal cycle. At lower elevations ofthe ice sheet where melting is more common, such damping could signal a rolefor fogs in preconditioning the surface for melting later in the day.
-
Abstract. Field investigations of the properties of heavily melted “rotten” Arcticsea ice were carried out on shorefast and drifting ice off the coast ofUtqiaġvik (formerly Barrow), Alaska, during the melt season. While noformal criteria exist to qualify when ice becomes rotten, the objectiveof this study was to sample melting ice at the point at which its structural andoptical properties are sufficiently advanced beyond the peak of the summerseason. Baseline data on the physical (temperature, salinity, density,microstructure) and optical (light scattering) properties of shorefast icewere recorded in May and June 2015. In July of both 2015 and 2017, smallboats were used to access drifting rotten ice within ∼32 km of Utqiaġvik. Measurements showed that pore space increased as icetemperature increased (−8 to 0 ∘C), ice salinitydecreased (10 to 0 ppt), and bulk density decreased (0.9 to0.6 g cm−3). Changes in pore space were characterized with thin-sectionmicrophotography and X-ray micro-computed tomography in the laboratory. Theseanalyses yielded changes in average brine inclusion number density (whichdecreased from 32 to 0.01 mm−3), mean pore size (whichincreased from 80 µm to 3 mm), and total porosity (increased from0 % to > 45 %) and structural anisotropy (variable, withvalues of generally less than 0.7). Additionally, light-scattering coefficientsof the ice increased from approximately 0.06 to > 0.35 cm−1 as the ice melt progressed. Together, these findings indicate thatthe properties of Arctic sea ice at the end of melt season are significantlydistinct from those of often-studied summertime ice. If such rotten ice wereto become more prevalent in a warmer Arctic with longer melt seasons, thiscould have implications for the exchange of fluid and heat at the oceansurface.