skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Implementing a course-based authentic learning experience with upper- and lower-division physics classes
We describe a dual-class authentic learning experience (ALE) in which undergraduate upper-division physics students develop low-cost instruments, which are then used by students in a lower-division course to monitor water quality in rivers. The ALE bridges the experiences of lower- and upper-division physics majors by involving students across different stages of their college careers in a collaborative project. Lower-division physics students characterize, calibrate, and troubleshoot the instrument prototypes developed by their upper-division peers, and their work informs instrument modifications in future upper-division physics classes. This paper describes the first iteration of this project along with student perceptions. We find that lower-division students report an increase in their awareness of possible upper-division projects, an increased sense that their coursework has real-world applications, and a heightened understanding of how physicists can play a role in research on environmental issues.  more » « less
Award ID(s):
2012891
PAR ID:
10451372
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
American Journal of Physics
Volume:
91
Issue:
9
ISSN:
0002-9505
Page Range / eLocation ID:
696 to 700
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Inquiry-based course experiences provide a scalable and equitable way to engage students in research. In this study, we describe how we introduced inquiry-based experiences to ten lower-division and upper-division courses across the biology curriculum at a regionally comprehensive public university serving the diverse population in a major metropolitan area. Student survey data suggest this redesign effectively developed students’ scientific skills and nurtured their sense of belonging. This project illustrates how inquiry-based experiences can be implemented sustainably across institutional context. 
    more » « less
  2. This project focuses on developing three technical courses for lower-division electrical engineering education to bridge the gap between Career and Technical Education (CTE) programs in high schools, engineering programs at community colleges, and lower-division electrical engineering courses at four-year universities. The primary goal of the project is to create a seamless academic transition by providing electrical engineering students with the necessary foundational knowledge in analog and digital systems, as well as hands-on experience with laboratory measurement tools. The courses utilize industry-relevant technologies such as LabView, MATLAB, PLC programming, and ready-to-use microcontroller boards to facilitate experiential learning at lower division courses. Early exposure to these tools and systems equips students with practical skills that not only prepare them for further academic pursuits but also align them with workforce demands in industries that increasingly rely on automation, data acquisition, and real-time system controls. The success of this project is attributed to its emphasis on design and project-based learning, which fosters critical thinking and problem-solving skills essential for real-world applications. By integrating design principles early in students' educational experiences, they are better prepared to tackle complex engineering problems as they progress through their academic careers. The use of project-based learning allows students to apply theoretical knowledge to tangible, real-world projects, improving their engagement and deepening their understanding of electrical engineering concepts. Practical tools like MATLAB and microcontroller boards in entry-level courses not only motivates students to pursue engineering but also increases retention rates in STEM fields, a key metric for academic success. This project is also advocating for early exposure to hands-on technical skills as a way to better prepare students for the workforce. By focusing on skill development in both CTE programs and early college courses, students are equipped with a stronger foundation for electrical engineering careers and are more likely to succeed in upper-division coursework and beyond. The seamless integration of high school, community college, and university programs ensures that students acquire both the theoretical and practical skills necessary to be successful in an increasingly technology-driven economy. Moreover, the project's use of industry-standard tools, coupled with its focus on bridging academic gaps, provides a sustainable model for developing a skilled and versatile workforce, addressing the growing need for engineers proficient in both design and system implementation. 
    more » « less
  3. Frank, Brian W.; Jones, Dyan L.; Ryan, Qing X. (Ed.)
    The ways in which physics majors make career decisions is a critical, yet understudied, aspect of the undergraduate experience. Such decisions are important to students, physics departments, and administrators. In this project, we specifically examine how students develop interests and intent to pursue specific subfields of physics by interviewing 13 physics majors from all years of study. The interviews examined factors that led students to choose their most preferred and least preferred subfields. Interviews leveraged the framework of Social Cognitive Career Theory, a model that describes how several constructs such as self-efficacy, learning experiences, and outcome expectations relate to decision-making. Findings highlight the differences in decision-making between upper-division students and beginning students. For instance, we see how popular culture and popular science provide an initial learning experience about certain subfields, such as astronomy and astrophysics, which strongly affect beginning students' perceptions of that subfield. Initial exposure to biology and chemistry in high school or early undergraduate classes often negatively affected students' interests in fields like biophysics or chemical physics. Data also suggests a splitting between students with respect to their outcome expectations of a desirable career in science. While some students prioritize using science to help people, others prioritize discovery of new knowledge though science, and some are in between. Students in both groups form perceptions about subfields that do not align with their identities and hence make decisions based on these perceptions. For instance, a student who prioritizes helping others through science may be quick to reject astrophysics as a subfield choice as they do not think that astrophysics can help people enough. 
    more » « less
  4. Preliminary model for student ownership of projects written by Dimitri R. Dounas-Frazer, Laura Ríos, and H. J. Lewandowski In many upper-division lab courses, instructors implement multiweek student-led projects. During such projects, students may design and carry out experiments, collect and analyze data, document and report their findings, and collaborate closely with peers and mentors. To better understand cognitive, social, and affective aspects of projects, we conducted an exploratory investigation of student ownership of projects. Ownership is a complex construct that refers to, e.g., students' willingness and ability to make strategic decisions about their project. Using data collected through surveys and interviews with students and instructors at five institutions, we developed a preliminary model for student ownership of projects. Our model describes ownership as a relationship between student and project. This relationship is characterized by student interactions with the project during three phases: choice of topic, execution of experiment, and synthesis of results. Herein, we explicate our model and demonstrate that it maps well onto students' and instructors' conceptions of ownership and ideas presented in prior literature. Physics Education Research Conference 2019 Part of the PER Conference series Provo, UT: July 24-25, 2019 
    more » « less
  5. The purpose of this NSF CAREER project is to advance understanding of the navigational strategies used by undergraduate engineering students from marginalized groups. Our poster will present an overview of our results from complete data collection at one site and a snapshot of the tool we developed to assess students’ navigation strategies. Over the past year, we concluded data collection at our first site. We interviewed upper division undergraduate students, talking to them about their experiences as engineering students and the opportunities and obstacles they encountered in engineering education. We then analyzed this data using two different approaches. First, we took an emotions-centered approach, investigating the contexts in which emotion words naturally surfaced in students as they talked about navigating engineering. Then we took a person-centered approach, uncovering how personal characteristics simplify or complicate navigating through the engineering learning environment. We looked at a subset of the interviews to understand the experiences of Women of Color (WOC) investigating how WOC thrive in engineering. Further analysis to understand the role of personhood in navigating is ongoing. We also finalized a situational judgment inventory (SJI), piloting the instrument we developed in the previous year and fine tuning based on pilot results. Our SJI is a multiple choice scenario assessment tool that contains one sentence scenarios with one sentence response options. Our final SJI contains 19 scenarios with 5 response options for each scenario. The scenarios are within the following domains: academic performance, faculty and staff interactions, extracurricular involvement, peer-group interactions, professional development, and special circumstances. We will share details about the instrument development process, final instrument, and preliminary results from instrument dissemination with undergraduate engineering students. Moving forward, we will interview undergraduate students at institutions beyond our primary data collection site to better understand how institutional context plays a role in student navigation of the engineering learning environment. 
    more » « less