The unique reactivity of molecules under force commands an understanding of structure–mechanochemical activity relationships. While conceptual frameworks for understanding force transduction in many systems are established, systematic investigations into force-coupled molecular torsions are limited. Here, we describe a novel fluorenyl naphthopyran mechanophore for which mechanical force is uniquely coupled to the torsional motions associated with the overall chemical transformation as a result of the conformational rigidity imposed by the fluorene group. Using a combined experimental and theoretical approach, we demonstrate that variation in the pulling geometry on the fluorene subunit results in significant differences in mechanochemical activity due to pronounced changes in how force is coupled to distinct torsional motions and their coherence with the nuclear motions that accompany the force-free ring-opening reaction. Notably, subtle changes in polymer attachment position lead to a >50% difference in the rate of mechanochemical activation in ultrasonication experiments. Our results offer new insights into the structural and geometric factors that influence mechanochemical reactivity by describing how mechanical force is coupled to a reaction that principally involves torsional motions.
more »
« less
Synthesis and mechanochemical inertness of a Zn ( II ) bidipyrrin double helix
Abstract Helices are unique structures that play important roles in biomacromolecules and chiral catalysis. The mechanochemical unfolding of helical structures has attracted the attention of chemists in the past few years. However, it is limited to a few cases which investigated how the mechanochemical reactivity is impacted by helical configurations. No synthetic helical mechanophore is reported. Herein, a Zn (II) bidipyrrin (BDPR‐Zn) double helix is designed as a potential mechanophore. A cyclic olefin containing a doubly strapped BDPR‐Zn is prepared and used for ring‐opening metathesis polymerization. The corresponding polymer is subjected to pulsed ultrasonication for mechanochemical testing. The sonication results reveal the mechanochemical inertness of BDPR‐Zn unit, which is further supported by force‐coupled simulation. Although no obvious activation is observed, our preliminary results on BDPR‐Zn unit could inspire further rational designs on force‐induced helix unfolding.
more »
« less
- Award ID(s):
- 2204079
- PAR ID:
- 10451373
- Date Published:
- Journal Name:
- Journal of Polymer Science
- Volume:
- 61
- Issue:
- 15
- ISSN:
- 2642-4150
- Page Range / eLocation ID:
- 1547 to 1553
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Polymers that release small molecules in response to mechanical force are promising candidates as next-generation on-demand delivery systems. Despite advancements in the development of mechanophores for releasing diverse payloads through careful molecular design, the availability of scaffolds capable of discharging biomedically significant cargos in substantial quantities remains scarce. In this report, we detail a nonscissile mechanophore built from an 8-thiabicyclo[3.2.1]octane 8,8-dioxide (TBO) motif that releases one equivalent of sulfur dioxide (SO2) from each repeat unit. The TBO mechanophore exhibits high thermal stability but is activated mechanochemically using solution ultrasonication in either organic solvent or aqueous media with up to 63% efficiency, equating to 206 molecules of SO2 released per 143.3 kDa chain. We quantified the mechanochemical reactivity of TBO by single-molecule force spectroscopy and resolved its single-event activation. The force-coupled rate constant for TBO opening reaches ∼9.0 s–1 at ∼1520 pN, and each reaction of a single TBO domain releases a stored length of ∼0.68 nm. We investigated the mechanism of TBO activation using ab initio steered molecular dynamic simulations and rationalized the observed stereoselectivity. These comprehensive studies of the TBO mechanophore provide a mechanically coupled mechanism of multi-SO2 release from one polymer chain, facilitating the translation of polymer mechanochemistry to potential biomedical applications.more » « less
-
Fundamental understanding of mechanochemical reactivity is important for designing new mechanophores. Besides the core structure of mechanophores, substituents on a mechanophore can affect its mechanochemical reactivity through electronic stabilization of the intermediate or effectiveness of force transduction from the polymer backbone to the mechanophore. The latter factor represents a unique mechanical effect in considering polymer mechanochemistry. Here, we show that regioisomeric linkage that is not directly adjacent to the first cleaving bond in cyclobutane can still significantly affect the mechanochemical reactivity of the mechanophore. We synthesized three non‐scissile 1,2‐diphenyl cyclobutanes, varying their linkage to the polymer backbone via theo,m, orp‐position of the diphenyl substituents. Even though the regioisomers share the same substituted cyclobutane core structure and similar electronic stabilization of the diradical intermediate from cleaving the first C−C bond, thepisomer exhibited significantly higher mechanochemical reactivity than theoandmisomers. The observed difference in reactivity can be rationalized as the much more effective force transduction to the scissile bond through thep‐position than the other two substitution positions. These findings point to the importance of considering force‐bearing linkages that are more distant from the bond to be cleaved when incorporating mechanophores into polymer backbones.more » « less
-
Understanding structure–mechanochemical reactivity relationships is important for informing the rational design of new stimuli-responsive polymers. To this end, establishing accurate reaction kinetics for mechanophore activation is a key objective. Here, we validate an initial rates method that enables the accurate and rapid determination of rate constants for ultrasound-induced mechanochemical transformations. Experimental reaction profiles are well-aligned with theoretical models, which support that the initial rates method effectively deconvolutes the kinetics of specific mechanophore activation from the competitive process of nonspecific chain scission.more » « less
-
The spiropyran mechanophore (SP) is employed as a reporter of molecular tension in a wide range of polymer matrices, but the influence of surrounding environment on the force-coupled kinetics of its ring opening has not been quantified. Here, we report single-molecule force spectroscopy studies of SP ring opening in five solvents that span normalized Reichardt solvent polarity factors (ETN) of 0.1–0.59. Individual multimechanophore polymers were activated under increasing tension at constant 300 nm s–1 displacement in an atomic force microscope. The extension results in a plateau in the force–extension curve, whose midpoint occurs at a transition force f* that corresponds to the force required to increase the rate constant of SP activation to approximately 30 s–1. More polar solvents lead to mechanochemical reactions that are easier to trigger; f* decreases across the series of solvents, from a high of 415 ± 13 pN in toluene to a low of 234 ± 9 pN in n-butanol. The trend in mechanochemical reactivity is consistent with the developing zwitterionic character on going from SP to the ring-opened merocyanine product. The force dependence of the rate constant (Δx‡) was calculated for all solvent cases and found to increase with ETN, which is interpreted to reflect a shift in the transition state to a later and more productlike position. The inferred shift in the transition state position is consistent with a double-well (two-step) reaction potential energy surface, in which the second step is rate determining, and the intermediate is more polar than the product.more » « less
An official website of the United States government

