skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on July 1, 2024

Title: The Impact of Pre-Service Teachers’ Perceptions of Engineering on Their Self-Efficacy with Teaching Engineering
Although engineering is becoming increasingly important in K-12 education, previous research has demonstrated that, similar to the general population, K-12 teachers typically hold inaccurate perceptions of engineering, which affects their ability to provide students with relevant engineering experiences. Studies have shown that K-12 teachers often confuse the work of engineers with that of automotive mechanics or construction workers or assume that engineering is only for “super smart” students who are naturally gifted or who come from higher socioeconomic backgrounds. This indicates that many teachers do not understand the nature of engineering work and have stereotypical attitudes about who is qualified to be an engineer. These inaccurate perceptions of engineering among K-12 teachers may influence the way that teachers introduce engineering practices to their students and make connections between engineering and the other STEM disciplines. In addition, teacher self-efficacy has been shown to not only influence teachers’ willingness to engage with a particular topic, but also to have a significant influence on the motivation and achievement of their students. Research also indicates that high-efficacy teachers typically exert more effort and utilize more effective instructional strategies than low-efficacy teachers. The goal of this study was to examine the perceptions that pre-service K-12 teachers hold about engineers and engineering, and to further explore how those perceptions influence their self-efficacy with teaching engineering and beliefs about what skills and resources are necessary to teach engineering in a K-12 classroom. We first developed a survey instrument that included questions taken from two previously published instruments: the Design, Engineering, and Technology survey and the Teaching Engineering Self-Efficacy Scale for K-12 Teachers. Forty-two students enrolled in an undergraduate program at {Name Redacted} in which students simultaneously pursue a bachelor’s degree in a STEM field and K-12 teacher licensure completed the survey. Based on survey responses, six participants, representing a range of self-efficacy scores and majors, were selected to participate in interviews. In these interviews, participants were asked questions about their perceptions of engineers and were also asked to sort a list of characteristics based on whether they applied to engineers or not. Finally, interview participants were asked questions about their confidence in their ability to teach engineering and about what skills and/or resources they would require to be able to teach engineering in their future classrooms. The results of this study indicated that the participants’ perceptions of engineering and engineers did impact their self-efficacy with teaching engineering and their beliefs about how well engineering could be incorporated into other STEM subjects. A recurring theme among participants with low self-efficacy was a lack of exposure to engineering and inaccurate perceptions of the nature of engineering work. These pre-service teachers felt that they would not be able to teach engineering to K-12 students because they did not personally have much exposure to engineering or knowledge about engineering work. In future work, we will investigate how providing pre-service teachers with training in engineering education and exposure to engineers and engineering students impacts both their perceptions of engineering and self-efficacy with teaching engineering.  more » « less
Award ID(s):
2106319
NSF-PAR ID:
10451455
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASEE annual conference exposition
ISSN:
2153-5965
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This complete research paper examines the connection between student beliefs about engineering as a profession, as well as the perceptions of their family and friends, to their reported self-efficacy, career expectations, and grittiness. The student responses examined were obtained from non-calculus ready engineering students at a large land grant institution in the Mid-Atlantic region. The students participated in a well-established program focused on cohort formation, mentorship, professional skill development, and fostering a sense of inclusion and belonging in engineering. The program, consisting of a one-week pre-fall bridge experience and two common courses, was founded in 2012 and has been operating with National Science Foundation (NSF) S-STEM funding since 2016. Students who received S-STEM funded scholarships are required to participate in focus groups, one-on-one interviews, and complete LAESE, MSLQ, and GRIT questionnaires each semester. The researchers applied qualitative coding methods to evaluate student responses from focus groups and one-one-one interviews which were conducted from 2017 to 2019. Questions examined in this paper include: 1) How would you describe an engineer? 2) Please describe what you think an engineer does on a daily basis. 3) What do you think your friends/family think of engineering? 4) What skills or characteristics do you think good engineers have? 5) What types of careers do you believe are filled by degree holding engineers? Student responses on the aforementioned questions were related to the self-efficacy, career expectation, and grit values obtained from the LAESE, MSLQ, and GRIT instruments. The nature of this longitudinal study allows the evolution of student responses to also be examined as they matriculate through their education. Additional analysis was performed to identify themes and numerical trends associated with student populations such as, underrepresented minorities, females, and first-generation college students. Results of this research are presented in an effort to further highlight the importance of exposure to STEM fields during an individual’s K-12 education, and express how student perceptions, self-efficacy, GRIT, and career expectations evolve over their undergraduate education. 
    more » « less
  2. This research paper presents preliminary results of an NSF-supported interdisciplinary collaboration between undergraduate engineering students and preservice teachers. The fields of engineering and elementary education share similar challenges when it comes to preparing undergraduate students for the new demands they will encounter in their profession. Engineering students need interprofessional skills that will help them value and negotiate the contributions of various disciplines while working on problems that require a multidisciplinary approach. Increasingly, the solutions to today's complex problems must integrate knowledge and practices from multiple disciplines and engineers must be able to recognize when expertise from outside their field can enhance their perspective and ability to develop innovative solutions. However, research suggests that it is challenging even for professional engineers to understand the roles, responsibilities, and integration of various disciplines, and engineering curricula have traditionally left little room for development of non-technical skills such as effective communication with a range of audiences and an ability to collaborate in multidisciplinary teams. Meanwhile, preservice teachers need new technical knowledge and skills that go beyond traditional core content knowledge, as they are now expected to embed engineering into science and coding concepts into traditional subject areas. There are nationwide calls to integrate engineering and coding into PreK-6 education as part of a larger campaign to attract more students to STEM disciplines and to increase exposure for girls and minority students who remain significantly underrepresented in engineering and computer science. Accordingly, schools need teachers who have not only the knowledge and skills to integrate these topics into mainstream subjects, but also the intention to do so. However, research suggests that preservice teachers do not feel academically prepared and confident enough to teach engineering-related topics. This interdisciplinary project provided engineering students with an opportunity to develop interprofessional skills as well as to reinforce their technical knowledge, while preservice teachers had the opportunity to be exposed to engineering content, more specifically coding, and develop competence for their future teaching careers. Undergraduate engineering students enrolled in a computational methods course and preservice teachers enrolled in an educational technology course partnered to plan and deliver robotics lessons to fifth and sixth graders. This paper reports on the effects of this collaboration on twenty engineering students and eight preservice teachers. T-tests were used to compare participants’ pre-/post- scores on a coding quiz. A post-lesson written reflection asked the undergraduate students to describe their robotics lessons and what they learned from interacting with their cross disciplinary peers and the fifth/sixth graders. Content analysis was used to identify emergent themes. Engineering students’ perceptions were generally positive, recounting enjoyment interacting with elementary students and gaining communication skills from collaborating with non-technical partners. Preservice teachers demonstrated gains in their technical knowledge as measured by the coding quiz, but reported lacking the confidence to teach coding and robotics independently of their partner engineering students. Both groups reported gaining new perspectives from working in interdisciplinary teams and seeing benefits for the fifth and sixth grade participants, including exposing girls and students of color to engineering and computing. 
    more » « less
  3. As K-12 engineering education becomes more ubiquitous in the U.S, increased attention has been paid to preparing the heterogeneous group of in-service teachers who have taken on the challenge of teaching engineering. Standards have emerged for professional development along with research on teacher learning in engineering that call for teachers to facilitate and support engineering learning environments. Given that many teachers may not have experienced engineering practice calls have been made to engage teaches K-12 teachers in the “doing” of engineering as part of their preparation. However, there is a need for research studying more specific nature of the “doing” and the instructional implications for engaging teachers in “doing” engineering. In general, to date, limited time and constrained resources necessitate that many professional development programs for K-12 teachers to engage participants in the same engineering activities they will enact with their students. While this approach supports teachers’ familiarity with curriculum and ability to anticipate students’ ideas, there is reason to believe that these experiences may not be authentic enough to support teachers in developing a rich understanding of the “doing” of engineering. K-12 teachers are often familiar with the materials and curricular solutions, given their experiences as adults, which means that engaging in the same tasks as their students may not be challenging enough to develop their understandings about engineering. This can then be consequential for their pedagogy: In our prior work, we found that teachers’ linear conceptions of the engineering design process can limit them from recognizing and supporting student engagement in productive design practices. Research on the development of engineering design practices with adults in undergraduate and professional engineering settings has shown significant differences in how adults approach and understand problems. Therefore, we conjectured that engaging teachers in more rigorous engineering challenges designed for adult engineering novices would more readily support their developing rich understandings of the ways in which professional engineers move through the design process. We term this approach meaningful engineering for teachers, and it is informed by work in science education that highlights the importance of learning environments creating a need for learners to develop and engage in disciplinary practices. We explored this approach to teachers’ professional learning experiences in doing engineering in an online graduate program for in-service teachers in engineering education at Tufts University entitled the Teacher Engineering Education Program (teep.tufts.edu). In this exploratory study, we asked: 1. How did teachers respond to engaging in meaningful engineering for teachers in the TEEP program? 2. What did teachers identify as important things they learned about engineering content and pedagogy? This paper focuses on one theme that emerged from teachers’ reflections. Our analysis found that teachers reported that meaningful engineering supported their development of epistemic empathy (“the act of understanding and appreciating someone's cognitive and emotional experience within an epistemic activity”) as a result of their own affective experiences in doing engineering that required significant iteration as well as using novel robotic materials. We consider how epistemic empathy may be an important aspect of teacher learning in K-12 engineering education and the potential implications for designing engineering teacher education. 
    more » « less
  4. This fundamental research in pre-college education engineering study investigates the ways in which elementary teachers learn about engineering by engaging in the epistemic practices of engineers. Teaching engineering explicitly in elementary settings is a paradigm shift, as most K-6 teachers are not taught about engineering in their preparation programs and did not do classroom engineering as students. However, current STEM education reforms require these teachers to teach engineering in science settings and it will require concerted efforts between professional development providers and educational researchers to better help these teachers learn about and teach engineering to their students. Our study context consisted of 18 2nd and 4th grade teachers participating in one of two two-day workshops. The first day focused on what engineering is, what the epistemic practices of engineering are, and how to manage classroom engineering projects. The second day focused on how to teach a specific engineering unit for their grade level. Taking a sociomaterial view of learning, we asked the following research questions: 1. How do the engineering notebooks scaffold the teachers activities and discourse? 2. How and to what extent does the notebook support their engagement in engineering practices? Our analysis triangulated between three data sources during a two-hour time period where teachers designed, tested, and improved enclosures intended to minimize cost and mass loss of an ice cube in a heat chamber (“Perspiring Penguins” (Schnittka, 2010)). We focused on teacher talk/action collected from video/audio recordings trained on four small groups (10 total teachers). We also collected engineering notebooks they used during this activity. After initial analyses, we followed up with select teachers with targeted interview questions to focus on clarification of questions that arose. Our findings suggest that the teachers use the notebooks in ways that are significantly different from the ways engineers do; however, they are a useful pedagogical tool that supported them in attending to and discussing activities that were necessary to engage in engineering practices and design/re-design their technology. Additionally, our paper will describe specific examples where teachers had rich discussions that were not represented in the notebooks but there were references made in the notebooks that were not explicitly discussed. Implications for the importance of well-designed notebooks and the benefits of ethnographic methods for researching teacher learning will be discussed. 
    more » « less
  5. A substantial achievement gap between K-12 English learners (ELs) and non-ELs in science, technology, engineering, and mathematics (STEM) content areas exists, as indicated by national assessments of student outcomes. Considering the expected steady increase in students who are ELs in the U.S., determining methods for addressing this achievement gap is of immediate concern. Research has indicated this gap may be exacerbated by lack of adequate teacher preparation, specifically in STEM fields, to effectively teach students who are culturally and linguistically diverse (CLD). Founded in previous research about effective teacher preparation, the current case study pilots and reports on a model of early STEM preservice teacher training that integrates: knowledge of language development for ELs, early experiences with CLD learners, and professional development activities that guide the implementation of STEM pedagogical methods. Five STEM preservice teachers participated in a year-long supplemental training program focused on adapting STEM instruction for ELs. Components of the supplemental program included: (a) coursework extending teacher knowledge of EL language development, (b) fieldwork providing early exposure to research-based teaching experiences with EL students, and (c) professional development guiding the creation of hands-on STEM curriculum for diverse learners. Five secondary preservice teachers experienced increases in self-efficacy, growth in STEM instructional practices, and greater motivation for teaching in high-need schools. Results will inform educational models for improving STEM-EL teaching, thereby addressing a crucial need to serve the growing national population of underserved students. 
    more » « less