skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Three-dimensional Dynamics of Strongly Twisted Magnetar Magnetospheres: Kinking Flux Tubes and Global Eruptions
Abstract The origins of the various outbursts of hard X-rays from magnetars (highly magnetized neutron stars) are still unknown. We identify instabilities in relativistic magnetospheres that can explain a range of X-ray flare luminosities. Crustal surface motions can twist the magnetar magnetosphere by shifting the frozen-in footpoints of magnetic field lines in current-carrying flux bundles. Axisymmetric (2D) magnetospheres exhibit strong eruptive dynamics, i.e., catastrophic lateral instabilities triggered by a critical footpoint displacement of ψ crit ≳ π . In contrast, our new three-dimensional (3D) twist models with finite surface extension capture important non-axisymmetric dynamics of twisted force-free flux bundles in dipolar magnetospheres. Besides the well-established global eruption resulting (as in 2D) from lateral instabilities, such 3D structures can develop helical, kink-like dynamics, and dissipate energy locally (confined eruptions). Up to 25% of the induced twist energy is dissipated and available to power X-ray flares in powerful global eruptions, with most of our models showing an energy release in the range of the most common X-ray outbursts, ≲10 43 erg. Such events occur when significant energy builds up while deeply buried in the dipole magnetosphere. Less energetic outbursts likely precede powerful flares, due to intermittent instabilities and confined eruptions of a continuously twisting flux tube. Upon reaching a critical state, global eruptions produce the necessary Poynting-flux-dominated outflows required by models prescribing the fast radio burst production in the magnetar wind—for example, via relativistic magnetic reconnection or shocks.  more » « less
Award ID(s):
1909458 2206610 2206607
PAR ID:
10451502
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
947
Issue:
2
ISSN:
2041-8205
Page Range / eLocation ID:
L34
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. The origin of ultra-rapid flares of very high-energy radiation from active galactic nuclei remains elusive. Magnetospheric processes, occurring in the close vicinity of the central black hole, could account for these flares. Aims. Our aim is to bridge the gap between simulations and observations by synthesizing gamma-ray light curves in order to characterize the activity of a black hole magnetosphere, using kinetic simulations. Methods. We performed global axisymmetric 2D general-relativistic particle-in-cell simulations of a Kerr black hole magnetosphere. We included a self-consistent treatment of radiative processes and plasma supply, as well as a realistic magnetic configuration, with a large-scale equatorial current sheet. We coupled our particle-in-cell code with a ray-tracing algorithm in order to produce synthetic light curves. Results. These simulations show a highly dynamic magnetosphere, as well as very efficient dissipation of the magnetic energy. An external supply of magnetic flux is found to maintain the magnetosphere in a dynamic state, otherwise the magnetosphere settles in a quasi-steady Wald-like configuration. The dissipated energy is mostly converted to gamma-ray photons. The light curves at low viewing angle (face-on) mainly trace the spark gap activity and exhibit high variability. On the other hand, no significant variability is found at high viewing angle (edge-on), where the main contribution comes from the reconnecting current sheet. Conclusions. We observe that black hole magnetospheres with a current sheet are characterized by a very high radiative efficiency. The typical amplitude of the flares in our simulations is lower than is detected in active galactic nuclei. These flares could result from the variation in parameters external to the black hole. 
    more » « less
  2. Abstract Magnetic reconnection can power bright, rapid flares originating from the inner magnetosphere of accreting black holes. We conduct extremely high-resolution (5376 × 2304 × 2304 cells) general-relativistic magnetohydrodynamics simulations, capturing plasmoid-mediated reconnection in a 3D magnetically arrested disk for the first time. We show that an equatorial, plasmoid-unstable current sheet forms in a transient, nonaxisymmetric, low-density magnetosphere within the inner few Schwarzschild radii. Magnetic flux bundles escape from the event horizon through reconnection at the universal plasmoid-mediated rate in this current sheet. The reconnection feeds on the highly magnetized plasma in the jets and heats the plasma that ends up trapped in flux bundles to temperatures proportional to the jet’s magnetization. The escaped flux bundles can complete a full orbit as low-density hot spots, consistent with Sgr A* observations by the GRAVITY interferometer. Reconnection near the horizon produces sufficiently energetic plasma to explain flares from accreting black holes, such as the TeV emission observed from M87. The drop in the mass accretion rate during the flare and the resulting low-density magnetosphere make it easier for very-high-energy photons produced by reconnection-accelerated particles to escape. The extreme-resolution results in a converged plasmoid-mediated reconnection rate that directly determines the timescales and properties of the flare. 
    more » « less
  3. Abstract Magnetospheres of neutron stars can be perturbed by star quakes, interaction in a binary system, or sudden collapse of the star. The perturbations are typically in the kilohertz band and excite magnetohydrodynamic waves. We show that compressive magnetospheric waves steepen into monster shocks, possibly the strongest shocks in the Universe. The shocks are radiative, i.e., the plasma energy is radiated before it crosses the shock. As the kilohertz wave with the radiative shock expands through the magnetosphere, it produces a bright X-ray burst. Then, it launches an approximately adiabatic blast wave, which will expand far from the neutron star. These results suggest a new mechanism for X-ray bursts from magnetars and support the connection of magnetar X-ray activity with fast radio bursts. Similar shocks may occur in magnetized neutron-star binaries before they merge, generating an X-ray precursor of the merger. Powerful radiative shocks are also predicted in the magnetosphere of a neutron star when it collapses into a black hole, producing a bright X-ray transient. 
    more » « less
  4. ABSTRACT We study dynamics of relativistic coronal mass ejections (CMEs), from launching by shearing of foot-points (either slowly – the ‘Solar flare’ paradigm, or suddenly – the ‘star quake’ paradigm), to propagation in the preceding magnetar wind. For slow shear, most of the energy injected into the CME is first spent on the work done on breaking through the overlaying magnetic field. At later stages, sufficiently powerful CMEs may lead to the ‘detonation’ of a CME and opening of the magnetosphere beyond some equipartition radius req, where the decreasing energy of the CME becomes larger than the decreasing external magnetospheric energy. Post-CME magnetosphere relaxes via the formation of a plasmoid-mediated current sheet, initially at ∼req, and slowly reaching the light cylinder. Both the location of the foot-point shear and the global magnetospheric configuration affect the frequent/weak versus rare/powerful CME dichotomy – to produce powerful flares, the slow shear should be limited to field lines that close in near the star. After the creation of a topologically disconnected flux tube, the tube quickly (at ∼ the light cylinder) comes into force-balance with the preceding wind and is passively advected/frozen in the wind afterward. For fast shear (a local rotational glitch), the resulting large amplitude Alfvén waves lead to the opening of the magnetosphere (which later recovers similarly to the slow shear case). At distances much larger than the light cylinder, the resulting shear Alfvén waves propagate through the wind non-dissipatively. 
    more » « less
  5. Abstract The most common form of magnetar activity is short X-ray bursts, with durations from milliseconds to seconds, and luminosities ranging from 10 36 –10 43 erg s −1 . Recently, an X-ray burst from the galactic magnetar SGR 1935+2154 was detected to be coincident with two fast radio burst (FRB) like events from the same source, providing evidence that FRBs may be linked to magnetar bursts. Using fully 3D force-free electrodynamics simulations, we show that such magnetar bursts may be produced by Alfvén waves launched from localized magnetar quakes: a wave packet propagates to the outer magnetosphere, becomes nonlinear, and escapes the magnetosphere, forming an ultra-relativistic ejecta. The ejecta pushes open the magnetospheric field lines, creating current sheets behind it. Magnetic reconnection can happen at these current sheets, leading to plasma energization and X-ray emission. The angular size of the ejecta can be compact, ≲1 sr if the quake launching region is small, ≲0.01 sr at the stellar surface. We discuss implications for the FRBs and the coincident X-ray burst from SGR 1935+2154. 
    more » « less