skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analytical model of the network topology and rigidity of calcium aluminosilicate glasses
Abstract Topological constraint theory (TCT) has enabled the prediction of various properties of oxide glasses as a function of their composition and structure. However, the robust application of TCT relies on accurate knowledge of the network structure and topology. Here, based on classical molecular dynamics simulations, we derive a fully analytical model describing the topology of the calcium aluminosilicate [(CaO)x(Al2O3)y(SiO2)1−xy, CAS] ternary system. This model yields the state of rigidity (flexible, isostatic, or stressed‐rigid) of CAS systems as a function of composition and temperature. These results reveal the existence of correlations between network topology and glass‐forming ability. This study suggests that glass‐forming ability is encoded in the network topology of the liquid state rather than that of the glassy state.  more » « less
Award ID(s):
1928538 1944510 1826420 1826050
PAR ID:
10451622
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of the American Ceramic Society
Volume:
104
Issue:
8
ISSN:
0002-7820
Format(s):
Medium: X Size: p. 3947-3962
Size(s):
p. 3947-3962
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Glass properties are governed by the interplay between network formers and network modifiers; for a given composition of network formers, the ratio of different cationic modifiers compensating the anionic species in the network has a profound effect, which is often nonlinear, called a mixed modifier effect (MME). We have investigated the MME of sodium (Na) and calcium (Ca) in an aluminosilicate (NCAS) glass series following the formula [Na2O]30−x[CaO]x[Al2O3]10[SiO2]60, wherex = 0, 7.5, 15, 22.5, and 30. A nonadditive trend was observed in hardness and indentation toughness, with aqueous corrosion resistance exhibiting a shift from incongruent to congruent corrosion, whereas the network structure determined by molecular dynamics simulations revealed no significant trend with composition. Additionally, the NCAS glass containing both [Na2O] and [CaO] within an intermediate range exhibited superior resistance to wear at high humidity, a clear MME phenomenon previously only observed in soda–lime silica. 
    more » « less
  2. Abstract The viscosity and its temperature dependence, the fragility, are key properties of a liquid. A low fragility is believed to promote the formation of metallic glasses. Yet, the fragility remains poorly understood, since experimental data of its compositional dependence are scarce. Here, we introduce the film inflation method (FIM), which measures the fragility of metallic glass forming liquids across wide ranges of composition and glass-forming ability. We determine the fragility for 170 alloys ranging over 25 at.% in Mg–Cu–Y. Within this alloy system, large fragility variations are observed. Contrary to the general understanding, a low fragility does not correlate with high glass-forming ability here. We introduce crystallization complexity as an additional contribution, which can potentially become significant when modeling glass forming ability over many orders of magnitude. 
    more » « less
  3. Abstract Rare‐earth iron garnets (REIG) have recently become the materials platform of choice for spintronic studies on ferrimagnetic insulators. However, thus far the materials studied have mainly been REIG with a single rare earth species such as thulium, yttrium, or terbium iron garnets. In this study, magnetometry, ferromagnetic resonance, and magneto‐optical Kerr effect imaging is used to explore the continuous variation of magnetic properties as a function of composition for YxTm3−xiron garnet (YxTm3−xIG) thin films grown by pulsed laser deposition on gadolinium gallium garnet substrates. It is reported that the tunability of the magnetic anisotropy energy, with full control achieved over the type of anisotropy (from perpendicular, to isotropic, to an in‐plane easy axis) on the same substrate. In addition, a nonmonotonic composition‐dependent anisotropy term is reported, which is ascribed to growth‐induced anisotropy similar to what is reported in garnet thin films grown by liquid‐phase epitaxy. Ferromagnetic resonance shows linear variation of the damping and the g‐factor across the composition range, consistent with prior theoretical work. Domain imaging reveals differences in reversal modes, remanant states, and domain sizes in YxTm3−xiron‐garnet thin films as a function of anisotropy. 
    more » « less
  4. Abstract The atomic structure of a germanium doped phosphorous selenide glass of composition Ge2.8P57.7Se39.5is determined as a function of pressure from ambient to 24 GPa using Monte-Carlo simulations constrained by high energy x-ray scattering data. The ambient pressure structure consists primarily of P4Se3molecules and planar edge shared phosphorus rings, reminiscent of those found in red phosphorous as well as a small fraction of locally clustered corner-sharing GeSe4tetrahedra. This low-density amorphous phase transforms into a high-density amorphous phase at ~6.3 GPa. The high-pressure phase is characterized by an extended network structure. The polyamorphic transformation between these two phases involves opening of the P3ring at the base of the P4Se3molecules and subsequent reaction with red phosphorus type moieties to produce a cross linked structure. The compression mechanism of the low-density phase involves increased molecular packing, whereas that of the high pressure phase involves an increase in the nearest-neighbor coordination number while the bond angle distributions broaden and shift to smaller angles. The entropy and volume changes associated with this polyamorphic transformation are positive and negative, respectively, and consequently the corresponding Clapeyron slope for this transition would be negative. This result has far reaching implications in our current understanding of the thermodynamics of polyamorphic transitions in glasses and glass-forming liquids. 
    more » « less
  5. Abstract Machine learning (ML) is emerging as a powerful tool to predict the properties of materials, including glasses. Informing ML models with knowledge of how glass composition affects short-range atomic structure has the potential to enhance the ability of composition-property models to extrapolate accurately outside of their training sets. Here, we introduce an approach wherein statistical mechanics informs a ML model that can predict the non-linear composition-structure relations in oxide glasses. This combined model offers an improved prediction compared to models relying solely on statistical physics or machine learning individually. Specifically, we show that the combined model accurately both interpolates and extrapolates the structure of Na2O–SiO2glasses. Importantly, the model is able to extrapolate predictions outside its training set, which is evidenced by the fact that it is able to predict the structure of a glass series that was kept fully hidden from the model during its training. 
    more » « less