skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unravelling the mechanism of pressure induced polyamorphic transition in an inorganic molecular glass
Abstract The atomic structure of a germanium doped phosphorous selenide glass of composition Ge2.8P57.7Se39.5is determined as a function of pressure from ambient to 24 GPa using Monte-Carlo simulations constrained by high energy x-ray scattering data. The ambient pressure structure consists primarily of P4Se3molecules and planar edge shared phosphorus rings, reminiscent of those found in red phosphorous as well as a small fraction of locally clustered corner-sharing GeSe4tetrahedra. This low-density amorphous phase transforms into a high-density amorphous phase at ~6.3 GPa. The high-pressure phase is characterized by an extended network structure. The polyamorphic transformation between these two phases involves opening of the P3ring at the base of the P4Se3molecules and subsequent reaction with red phosphorus type moieties to produce a cross linked structure. The compression mechanism of the low-density phase involves increased molecular packing, whereas that of the high pressure phase involves an increase in the nearest-neighbor coordination number while the bond angle distributions broaden and shift to smaller angles. The entropy and volume changes associated with this polyamorphic transformation are positive and negative, respectively, and consequently the corresponding Clapeyron slope for this transition would be negative. This result has far reaching implications in our current understanding of the thermodynamics of polyamorphic transitions in glasses and glass-forming liquids.  more » « less
Award ID(s):
1855176
PAR ID:
10154413
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The response of forsterite, Mg2SiO4, under dynamic compression is of fundamental importance for understanding its phase transformations and high‐pressure behavior. Here, we have carried out an in situ X‐ray diffraction study of laser‐shocked polycrystalline and single‐crystal forsterite (a‐,b‐, andc‐orientations) from 19 to 122 GPa using the Matter in Extreme Conditions end‐station of the Linac Coherent Light Source. Under laser‐based shock loading, forsterite does not transform to the high‐pressure equilibrium assemblage of MgSiO3bridgmanite and MgO periclase, as has been suggested previously. Instead, we observe forsterite and forsterite III, a metastable polymorph of Mg2SiO4, coexisting in a mixed‐phase region from 33 to 75 GPa for both polycrystalline and single‐crystal samples. Densities inferred from X‐ray diffraction data are consistent with earlier gas‐gun shock data. At higher stress, the response is sample‐dependent. Polycrystalline samples undergo amorphization above 79 GPa. For [010]‐ and [001]‐oriented crystals, a mixture of crystalline and amorphous material is observed to 108 GPa, whereas the [100]‐oriented forsterite adopts an unknown phase at 122 GPa. The first two sharp diffraction peaks of amorphous Mg2SiO4show a similar trend with compression as those observed for MgSiO3in both recent static‐ and laser‐driven shock experiments. Upon release to ambient pressure, all samples retain or revert to forsterite with evidence for amorphous material also present in some cases. This study demonstrates the utility of femtosecond free‐electron laser X‐ray sources for probing the temporal evolution of high‐pressure silicate structures through the nanosecond‐scale events of shock compression and release. 
    more » « less
  2. Abstract The silver‐fluorine phase diagram has been scrutinized as a function of external pressure using theoretical methods. Our results indicate that two novel stoichiometries containing Ag+and Ag2+cations (Ag3F4and Ag2F3) are thermodynamically stable at ambient and low pressure. Both are computed to be magnetic semiconductors under ambient pressure conditions. For Ag2F5, containing both Ag2+and Ag3+, we find that strong 1D antiferromagnetic coupling is retained throughout the pressure‐induced phase transition sequence up to 65 GPa. Our calculations show that throughout the entire pressure range of their stability the mixed‐valence fluorides preserve a finite band gap at the Fermi level. We also confirm the possibility of synthesizing AgF4as a paramagnetic compound at high pressure. Our results indicate that this compound is metallic in its thermodynamic stability region. Finally, we present general considerations on the thermodynamic stability of mixed‐valence compounds of silver at high pressure. 
    more » « less
  3. Abstract All-solid-state sodium batteries (ASSSBs) are promising candidates for grid-scale energy storage. However, there are no commercialized ASSSBs yet, in part due to the lack of a low-cost, simple-to-fabricate solid electrolyte (SE) with electrochemical stability towards Na metal. In this work, we report a family of oxysulfide glass SEs (Na 3 PS 4− x O x , where 0 <  x  ≤ 0.60) that not only exhibit the highest critical current density among all Na-ion conducting sulfide-based SEs, but also enable high-performance ambient-temperature sodium-sulfur batteries. By forming bridging oxygen units, the Na 3 PS 4− x O x SEs undergo pressure-induced sintering at room temperature, resulting in a fully homogeneous glass structure with robust mechanical properties. Furthermore, the self-passivating solid electrolyte interphase at the Na|SE interface is critical for interface stabilization and reversible Na plating and stripping. The new structural and compositional design strategies presented here provide a new paradigm in the development of safe, low-cost, energy-dense, and long-lifetime ASSSBs. 
    more » « less
  4. In light of breakthroughs in superconductivity under high pressure, and considering that record critical temperatures (Tcs) across various systems have been achieved under high pressure, the primary challenge for higher Tcshould no longer solely be to increase Tcunder extreme conditions but also to reduce, or ideally eliminate, the need for applied pressure in retaining pressure-induced or -enhanced superconductivity. The topological semiconductor Bi0.5Sb1.5Te3(BST) was chosen to demonstrate our approach to addressing this challenge and exploring its intriguing physics. Under pressures up to ~50 GPa, three superconducting phases (BST-I, -II, and -III) were observed. A superconducting phase in BST-I appears at ~4 GPa, without a structural transition, suggesting the possible topological nature of this phase. Using the pressure-quench protocol (PQP) recently developed by us, we successfully retained this pressure-induced phase at ambient pressure and revealed the bulk nature of the state. Significantly, this demonstrates recovery of a pressure-quenched sample from a diamond anvil cell at room temperature with the pressure-induced phase retained at ambient pressure. Other superconducting phases were retained in BST-II and -III at ambient pressure and subjected to thermal and temporal stability testing. Superconductivity was also found in BST with Tcup to 10.2 K, the record for this compound series. While PQP maintains superconducting phases in BST at ambient pressure, both depressurization and PQP enhance its Tc, possibly due to microstructures formed during these processes, offering an added avenue to raise Tc. These findings are supported by our density-functional theory calculations. 
    more » « less
  5. Abstract The crystal structure and bonding environment of K2Ca(CO3)2bütschliite were probed under isothermal compression via Raman spectroscopy to 95 GPa and single crystal and powder X-ray diffraction to 12 and 68 GPa, respectively. A second order Birch-Murnaghan equation of state fit to the X-ray data yields a bulk modulus,$${K}_{0}=46.9$$ K 0 = 46.9 GPa with an imposed value of$${K}_{0}^{\prime}= 4$$ K 0 = 4 for the ambient pressure phase. Compression of bütschliite is highly anisotropic, with contraction along thec-axis accounting for most of the volume change. Bütschliite undergoes a phase transition to a monoclinicC2/mstructure at around 6 GPa, mirroring polymorphism within isostructural borates. A fit to the compression data of the monoclinic phase yields$${V}_{0}=322.2$$ V 0 = 322.2  Å3$$,$$ , $${K}_{0}=24.8$$ K 0 = 24.8 GPa and$${K}_{0}^{\prime}=4.0$$ K 0 = 4.0 using a third order fit; the ability to access different compression mechanisms gives rise to a more compressible material than the low-pressure phase. In particular, compression of theC2/mphase involves interlayer displacement and twisting of the [CO3] units, and an increase in coordination number of the K+ion. Three more phase transitions, at ~ 28, 34, and 37 GPa occur based on the Raman spectra and powder diffraction data: these give rise to new [CO3] bonding environments within the structure. 
    more » « less