skip to main content


Title: Spectroscopic Confirmation of the Nearby, Wide-separation L Dwarf Pair CWISE J061741.79+194512.8AB
Abstract

We present spectroscopic confirmation of a nearby L dwarf pair, CWISE J061741.79+194512.8AB. Keck/NIRES near-infrared spectroscopy shows that the pair is composed of an L2 dwarf primary and an L4 dwarf secondary. High resolution spectroscopy of the combined light system with Keck/NIRSPEC yields a radial velocity of 29.2 ± 0.3 km s−1and a projected rotational velocityvsini=41.62.6+2.7km s−1. Our spectrophotometric distance estimate places the system at 28.2 ± 5.7 pc, significantly more distant than originally estimated in Kirkpatrick et al. The angular separation of the components is 1.″31 ± 0.″14, corresponding to a projected physical separation of 37 ± 8 au.

 
more » « less
NSF-PAR ID:
10451639
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
Research Notes of the AAS
Volume:
7
Issue:
8
ISSN:
2515-5172
Format(s):
Medium: X Size: Article No. 184
Size(s):
["Article No. 184"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Makani galaxy hosts the poster child of a galactic wind on scales of the circumgalactic medium. It consists of a two-episode wind in which the slow, outer wind originated 400 Myr ago (Episode I;RI= 20 − 50 kpc) and the fast, inner wind is 7 Myr old (Episode II;RII= 0 − 20 kpc). While this wind contains ionized, neutral, and molecular gas, the physical state and mass of the most extended phase—the warm, ionized gas—are unknown. Here we present Keck optical spectra of the Makani outflow. These allow us to detect hydrogen lines out tor= 30–40 kpc and thus constrain the mass, momentum, and energy in the wind. Many collisionally excited lines are detected throughout the wind, and their line ratios are consistent with 200–400 km s−1shocks that power the ionized gas, withvshock=σwind. Combining shock models, density-sensitive line ratios, and mass and velocity measurements, we estimate that the ionized mass and outflow rate in the Episode II wind could be as high as those of the molecular gas:MIIHIIMIIH2=(12)×109ManddM/dtIIHIIdM/dtIIH2=170250Myr−1. The outer wind has slowed, so thatdM/dtIHII10Myr−1, but it contains more ionized gas,MIHII=5×109M. The momentum and energy in the recent Episode II wind imply a momentum-driven flow (p“boost” ∼7) driven by the hot ejecta and radiation pressure from the Eddington-limited, compact starburst. Much of the energy and momentum in the older Episode I wind may reside in a hotter phase, or lie further into the circumgalactic medium.

     
    more » « less
  2. Abstract

    We report on the discovery and analysis of the planetary microlensing event OGLE-2019-BLG-1180 with a planet-to-star mass ratioq∼ 0.003. The event OGLE-2019-BLG-1180 has unambiguous cusp-passing and caustic-crossing anomalies, which were caused by a wide planetary caustic withs≃ 2, wheresis the star–planet separation in units of the angular Einstein radiusθE. Thanks to well-covered anomalies by the Korea Micorolensing Telescope Network (KMTNet), we measure both the angular Einstein radius and the microlens parallax in spite of a relatively short event timescale oftE= 28 days. However, because of a weak constraint on the parallax, we conduct a Bayesian analysis to estimate the physical lens parameters. We find that the lens system is a super-Jupiter-mass planet ofMp=1.750.51+0.53MJorbiting a late-type star ofMh=0.550.26+0.27Mat a distanceDL=6.11.3+0.9kpc. The projected star–planet separation isa=5.191.23+0.90au, which means that the planet orbits at about four times the snow line of the host star. Considering the relative lens–source proper motion ofμrel= 6 mas yr−1, the lens will be separated from the source by 60 mas in 2029. At that time one can measure the lens flux from adaptive optics imaging of Keck or a next-generation 30 m class telescope. OGLE-2019-BLG-1180Lb represents a growing population of wide-orbit planets detected by KMTNet, so we also present a general investigation into prospects for further expanding the sample of such planets.

     
    more » « less
  3. Abstract

    The repeating fast radio burst FRB 20190520B is localized to a galaxy atz= 0.241, much closer than expected given its dispersion measure DM = 1205 ± 4 pc cm−3. Here we assess implications of the large DM and scattering observed from FRB 20190520B for the host galaxy’s plasma properties. A sample of 75 bursts detected with the Five-hundred-meter Aperture Spherical radio Telescope shows scattering on two scales: a mean temporal delayτ(1.41 GHz) = 10.9 ± 1.5 ms, which is attributed to the host galaxy, and a mean scintillation bandwidth Δνd(1.41 GHz) = 0.21 ± 0.01 MHz, which is attributed to the Milky Way. Balmer line measurements for the host imply an Hαemission measure (galaxy frame) EMs= 620 pc cm−6× (T/104K)0.9, implying DMHαof order the value inferred from the FRB DM budget,DMh=1121138+89pc cm−3for plasma temperatures greater than the typical value 104K. Combiningτand DMhyields a nominal constraint on the scattering amplification from the host galaxyF˜G=1.50.3+0.8(pc2km)1/3, whereF˜describes turbulent density fluctuations andGrepresents the geometric leverage to scattering that depends on the location of the scattering material. For a two-screen scattering geometry whereτarises from the host galaxy and Δνdfrom the Milky Way, the implied distance between the FRB source and dominant scattering material is ≲100 pc. The host galaxy scattering and DM contributions support a novel technique for estimating FRB redshifts using theτ–DM relation, and are consistent with previous findings that scattering of localized FRBs is largely dominated by plasma within host galaxies and the Milky Way.

     
    more » « less
  4. Abstract

    Benchmark brown dwarf companions with well-determined ages and model-independent masses are powerful tools to test substellar evolutionary models and probe the formation of giant planets and brown dwarfs. Here, we report the independent discovery of HIP 21152 B, the first imaged brown dwarf companion in the Hyades, and conduct a comprehensive orbital and atmospheric characterization of the system. HIP 21152 was targeted in an ongoing high-contrast imaging campaign of stars exhibiting proper-motion changes between Hipparcos and Gaia, and was also recently identified by Bonavita et al. (2022) and Kuzuhara et al. (2022). Our Keck/NIRC2 and SCExAO/CHARIS imaging of HIP 21152 revealed a comoving companion at a separation of 0.″37 (16 au). We perform a joint orbit fit of all available relative astrometry and radial velocities together with the Hipparcos-Gaia proper motions, yielding a dynamical mass of244+6MJup, which is 1–2σlower than evolutionary model predictions. Hybrid grids that include the evolution of cloud properties best reproduce the dynamical mass. We also identify a comoving wide-separation (1837″ or 7.9 × 104au) early-L dwarf with an inferred mass near the hydrogen-burning limit. Finally, we analyze the spectra and photometry of HIP 21152 B using the Saumon & Marley (2008) atmospheric models and a suite of retrievals. The best-fit grid-based models havefsed= 2, indicating the presence of clouds,Teff= 1400 K, andlogg=4.5dex. These results are consistent with the object’s spectral type of T0 ± 1. As the first benchmark brown dwarf companion in the Hyades, HIP 21152 B joins the small but growing number of substellar companions with well-determined ages and dynamical masses.

     
    more » « less
  5. Abstract

    In this follow-up analysis, we update previous constraints on the transitional Planck mass (TPM) modified gravity model using the latest version of EFTCAMB and provide new constraints using South Pole Telescope (SPT) and Planck anisotropy data along with Planck cosmic microwave background lensing, baryon acoustic oscillations, and Type Ia supernovae data and a Hubble constant,H0, prior from local measurements. We find that large shifts in the Planck mass lead to large suppression of power on small scales that is disfavored by both the SPT and Planck data. Using only the SPT temperature-polarization–polarization-polarization (TE-EE) data, this suppression of power can be compensated for by an upward shift of the scalar index tons= 1.003 ± 0.016, resulting inH0=71.940.85+0.86km m−1Mpc−1and a ∼7% shift in the Planck mass. Including the Planck temperature-temperature (TT) ≤ 650 and Planck TE-EE data restricts the shift to be <5% at 2σwithH0= 70.65 ± 0.66 km m−1Mpc−1. Excluding theH0prior, the SPT and Planck data constrain the shift in the Planck mass to be <3% at 2σwith a best-fit value of 0.04%, consistent with the Λ cold dark matter limit. In this caseH0=69.090.68+0.69km s−1Mpc−1, which is partially elevated by the dynamics of the scalar field in the late Universe. This differs from early dark energy models that prefer higher values ofH0when the high-Planck TT data are excluded. We additionally constrain TPM using redshift space distortion data from BOSS DR12 and cosmic shear, galaxy–galaxy lensing, and galaxy clustering data from DES Y1, finding both disfavor transitions close to recombination, but earlier Planck mass transitions are allowed.

     
    more » « less