skip to main content


Title: Multiphoton‐Guided Creation of Complex Organ‐Specific Microvasculature
Abstract

Engineering functional human tissues in vitro is currently limited by difficulty replicating the small caliber, complex connectivity, cellularity, and 3D curvature of the native microvasculature. Multiphoton ablation has emerged as a promising technique for fabrication of microvascular structures with high resolution and full 3D control, but cellularization and perfusion of complex capillary‐scale structures has remained challenging. Here, multiphoton ablation combined with guided endothelial cell growth from pre‐formed microvessels is used to successfully create perfusable and cellularized organ‐specific microvascular structures at anatomic scale within collagen hydrogels. Fabrication and perfusion of model 3D pulmonary and renal microvascular beds is demonstrated, as is replication and perfusion of a brain microvascular unit derived from in vivo data. Successful endothelialization and blood perfusion of a kidney‐specific microvascular structure is achieved, using laser‐guided angiogenesis. Finally, proof‐of‐concept hierarchical blood vessels and complex multicellular models are created, using multistep patterning with multiphoton ablation techniques. These successes open new doors for the creation of engineered tissues and organ‐on‐a‐chip devices.

 
more » « less
NSF-PAR ID:
10451682
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Healthcare Materials
Volume:
10
Issue:
10
ISSN:
2192-2640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Engineering functional tissues and organs remains a fundamental pursuit in bio‐fabrication. However, the accurate constitution of complex shapes and internal anatomical features of specific organs, including their intricate blood vessels and nerves, remains a significant challenge. Inspired by the Matryoshka doll, here a new method called “Intra‐Embedded Bioprinting (IEB)” is introduced building upon existing embedded bioprinting methods. a xanthan gum‐based material is used which served a dual role as both a bioprintable ink and a support bath, due to its unique shear‐thinning and self‐healing properties. IEB's capabilities in organ modeling, creating a miniaturized replica of a pancreas using a photocrosslinkable silicone composite is demonstrated. Further, a head phantom and a Matryoshka doll are 3D printed, exemplifying IEB's capability to manufacture intricate, nested structures. Toward the use case of IEB and employing an innovative coupling strategy between extrusion‐based and aspiration‐assisted bioprinting, a breast tumor model that included a central channel mimicking a blood vessel, with tumor spheroids bioprinted in proximity is developed. Validation using a clinically‐available chemotherapeutic drug illustrated its efficacy in reducing the tumor volume via perfusion over time. This method opens a new way of bioprinting enabling the creation of complex‐shaped organs with internal anatomical features.

     
    more » « less
  2. Abstract

    As bioprinting advances into clinical relevance with patient-specific tissue and organ constructs, it must be capable of multi-material fabrication at high resolutions to accurately mimick the complex tissue structures found in the body. One of the most fundamental structures to regenerative medicine is microvasculature. Its continuous hierarchical branching vessel networks bridge surgically manipulatable arteries (∼1–6 mm) to capillary beds (∼10µm). Microvascular perfusion must be established quickly for autologous, allogeneic, or tissue engineered grafts to survive implantation and heal in place. However, traditional syringe-based bioprinting techniques have struggled to produce perfusable constructs with hierarchical branching at the resolution of the arterioles (∼100-10µm) found in microvascular tissues. This study introduces the novel CEVIC bioprinting device (i.e.ContinuouslyExtrudedVariableInternalChanneling), a multi-material technology that breaks the current extrusion-based bioprinting paradigm of pushing cell-laden hydrogels through a nozzle as filaments, instead, in the version explored here, extruding thin, wide cell-laden hydrogel sheets. The CEVIC device adapts the chaotic printing approach to control the width and number of microchannels within the construct as it is extruded (i.e. on-the-fly). Utilizing novel flow valve designs, this strategy can produce continuous gradients varying geometry and materials across the construct and hierarchical branching channels with average widths ranging from 621.5 ± 42.92%µm to 11.67 ± 14.99%µm, respectively, encompassing the resolution range of microvascular vessels. These constructs can also include fugitive/sacrificial ink that vacates to leave demonstrably perfusable channels. In a proof-of-concept experiment, a co-culture of two microvascular cell types, endothelial cells and pericytes, sustained over 90% viability throughout 1 week in microchannels within CEVIC-produced gelatin methacryloyl-sodium alginate hydrogel constructs. These results justify further exploration of generating CEVIC-bioprinted microvasculature, such as pre-culturing and implantation studies.

     
    more » « less
  3. Abstract

    Tissue engineered grafts show great potential as regenerative implants for diseased or injured tissues within the human body. However, these grafts suffer from poor nutrient perfusion and waste transport, thus decreasing their viability post‐transplantation. Graft vascularization is therefore a major area of focus within tissue engineering because biologically relevant conduits for nutrient and oxygen perfusion can improve viability post‐implantation. Many researchers used microphysiological systems as testing platforms for potential grafts owing to an ability to integrate vascular networks as well as biological characteristics such as fluid perfusion, 3D architecture, compartmentalization of tissue‐specific materials, and biophysical and biochemical cues. Although many methods of vascularizing these systems exist, microvascular self‐assembly has great potential for bench‐to‐clinic translation as it relies on naturally occurring physiological events. In this review, the past decade of literature is highlighted, and the most important and tunable components yielding a self‐assembled vascular network on chip are critically discussed: endothelial cell source, tissue‐specific supporting cells, biomaterial scaffolds, biochemical cues, and biophysical forces. This paper discusses the bioengineered systems of angiogenesis, vasculogenesis, and lymphangiogenesis and includes a brief overview of multicellular systems. It concludes with future avenues of research to guide the next generation of vascularized microfluidic models.

     
    more » « less
  4. Abstract

    Anisotropic 3D tissue interfaces with functional gradients found in nature are replicated in vitro for drug development and tissue engineering. Even though different fabrication techniques, based on material science engineering and microfluidics, are used to generate such microenvironments, mimicking the native tissue gradient is still a challenge. Here, the fabrication of 3D structures are described with linear/random porosity and gradient distribution of hydroxyapatite microparticles which are combined with a gradient of growth factors generated by a dual chamber for the development of heterotypic‐like tissues. The hydroxyapatite gradient is formed by applying a thermal ramp from the first to the second gel layer, and the porous architecture is controlled through ice templating. A 3D osteochondral (OC) tissue model is developed by codifferentiating fat pad adipose‐derived stem cells. Osteogenic and chondrogenic markers expression is spatially controlled, as it occurs in the native osteochondral unit. Additionally, a prevasculature is spatially induced by the perfusion of proangiogenic medium in the bone‐like region, as observed in the native subchondral bone. Thus, in this study, precise spatial control is developed over cell/tissue phenotype and formation of prevasculature which opens up possibilities for the study of complex tissues interfaces, with broader applications in drug testing and regenerative medicine.

     
    more » « less
  5. Abstract

    3D bioprinting is an emerging technology to fabricate tissues and organs by precisely positioning cells into 3D structures using printable cell‐laden formulations known as bioinks. Various bioinks are utilized in 3D bioprinting applications; however, developing the perfect bioink to fabricate constructs with biomimetic microenvironment and mechanical properties that are similar to native tissues is a challenging task. In recent years, decellularized extracellular matrix (dECM)‐based bioinks have received an increasing attention in 3D bioprinting applications, since they are derived from native tissues and possess unique, complex tissue‐specific biochemical properties. This review focuses on designing dECM‐based bioinks for tissue and organ bioprinting, including commonly used decellularization and decellularized tissue characterization methods, bioink formulation and characterization, applications of dECM‐based bioinks, and most recent advancements in dECM‐based bioink design.

     
    more » « less