skip to main content


Title: Designing Decellularized Extracellular Matrix‐Based Bioinks for 3D Bioprinting
Abstract

3D bioprinting is an emerging technology to fabricate tissues and organs by precisely positioning cells into 3D structures using printable cell‐laden formulations known as bioinks. Various bioinks are utilized in 3D bioprinting applications; however, developing the perfect bioink to fabricate constructs with biomimetic microenvironment and mechanical properties that are similar to native tissues is a challenging task. In recent years, decellularized extracellular matrix (dECM)‐based bioinks have received an increasing attention in 3D bioprinting applications, since they are derived from native tissues and possess unique, complex tissue‐specific biochemical properties. This review focuses on designing dECM‐based bioinks for tissue and organ bioprinting, including commonly used decellularization and decellularized tissue characterization methods, bioink formulation and characterization, applications of dECM‐based bioinks, and most recent advancements in dECM‐based bioink design.

 
more » « less
NSF-PAR ID:
10455036
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Healthcare Materials
Volume:
9
Issue:
24
ISSN:
2192-2640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The generation of 3D tissue constructs with multiple cell types and matching mechanical properties remains a challenge in cardiac tissue engineering. Recently, 3D bioprinting has become a powerful tool to achieve these goals. Decellularized extracellular matrix (dECM) is a common scaffold material due to providing a native biochemical environment. Unfortunately, dECM’s low mechanical stability prevents usage for bioprinting applications alone. In this study, we developed bioinks composed of decellularized human heart ECM (dhECM) with either gelatin methacryloyl (GelMA) or GelMA-methacrylated hyaluronic acid (MeHA) hydrogels dual crosslinked with UV light and microbial transglutaminase (mTGase). We characterized the bioinks’ mechanical, rheological, swelling, printability, and biocompatibility properties. Composite GelMA–MeHA–dhECM (GME) hydrogels demonstrated improved mechanical properties by an order of magnitude compared to the GelMA–dhECM (GE) hydrogels. All hydrogels were extrudable and compatible with human induced pluripotent stem cell derived cardiomyocytes (iCMs) and human cardiac fibroblasts (hCFs). Tissue-like beating of the printed constructs with striated sarcomeric alpha-actinin and connexin 43 expression was observed. The order of magnitude difference between the elastic modulus of these hydrogel composites offers applications in in vitro modeling of the myocardial infarct boundary. Here, as a proof of concept, we created an infarct boundary region with control over the mechanical properties along with the cellular and macromolecular content through printing iCMs with GE bioink and hCFs with GME bioink. 
    more » « less
  2. Abstract

    Bioprinting has emerged as an advanced method for fabricating complex 3D tissues. Despite the tremendous potential of 3D bioprinting, there are several drawbacks of current bioinks and printing methodologies that limit  the ability to print elastic and highly vascularized tissues. In particular, fabrication of complex biomimetic structure that are entirely based on 3D bioprinting is still challenging primarily due to the lack of suitable bioinks with high printability, biocompatibility, biomimicry, and proper mechanical properties. To address these shortcomings, in this work the use of recombinant human tropoelastin as a highly biocompatible and elastic bioink for 3D printing of complex soft tissues is demonstrated. As proof of the concept, vascularized cardiac constructs are bioprinted and their functions are assessed in vitro and in vivo. The printed constructs demonstrate endothelium barrier function and spontaneous beating of cardiac muscle cells, which are important functions of cardiac tissue in vivo. Furthermore, the printed construct elicits minimal inflammatory responses, and is shown to be efficiently biodegraded in vivo when implanted subcutaneously in rats. Taken together, these results demonstrate the potential of the elastic bioink for printing 3D functional cardiac tissues, which can eventually be used for cardiac tissue replacement.

     
    more » « less
  3. Abstract

    3D bioprinting has been evolving as an important strategy for the fabrication of engineered tissues for clinical, diagnostic, and research applications. A major advantage of bioprinting is the ability to recapitulate the patient-specific tissue macro-architecture using cellular bioinks. The effectiveness of bioprinting can be significantly enhanced by incorporating the ability to preferentially organize cellular constituents within 3D constructs to mimic the intrinsic micro-architectural characteristics of native tissues. Accordingly, this work focuses on a new non-contact and label-free approach called ultrasound-assisted bioprinting (UAB) that utilizes acoustophoresis principle to align cells within bioprinted constructs. We describe the underlying process physics and develop and validate computational models to determine the effects of ultrasound process parameters (excitation mode, excitation time, frequency, voltage amplitude) on the relevant temperature, pressure distribution, and alignment time characteristics. Using knowledge from the computational models, we experimentally investigate the effect of selected process parameters (frequency, voltage amplitude) on the critical quality attributes (cellular strand width, inter-strand spacing, and viability) of MG63 cells in alginate as a model bioink system. Finally, we demonstrate the UAB of bilayered constructs with parallel (0°–0°) and orthogonal (0°–90°) cellular alignment across layers. Results of this work highlight the key interplay between the UAB process design and characteristics of aligned cellular constructs, and represent an important next step in our ability to create biomimetic engineered tissues.

     
    more » « less
  4. Abstract

    Soft tissue injuries such as volumetric muscle loss (VML) are often too large to heal normally on their own, resulting in scar formation and functional deficits. Decellularized extracellular matrix (dECM) scaffolds placed into these wounds have shown the ability to modulate the immune response and drive constructive healing. This provides a potential solution for functional tissue regeneration, however, these acellular dECM scaffolds are challenging to fabricate into complex geometries. 3D bioprinting is uniquely positioned to address this, being able to create patient‐specific scaffolds based on clinical 3D imaging data. Here, a process to use freeform reversible embedding of suspended hydrogels (FRESH) 3D bioprinting and computed tomography (CT) imaging to build large volume, patient‐specific dECM patches (≈12 × 8 × 2 cm) for implantation into canine VML wound models is developed. Quantitative analysis shows that these dECM patches are dimensionally accurate and conformally adapt to the surface of complex wounds. Finally, this approach is extended to a human VML injury to demonstrate the fabrication of clinically relevant dECM scaffolds with precise control over fiber alignment and micro‐architecture. Together these advancements represent a step towards an improved, clinically translatable, patient‐specific treatment for soft tissue defects from trauma, tumor resection, and other surgical procedures.

     
    more » « less
  5. Abstract

    3D bioprinting is an emerging additive manufacturing technique to fabricate constructs for human disease modeling. However, current cell‐laden bioinks lack sufficient biocompatibility, printability, and structural stability needed to translate this technology to preclinical and clinical trials. Here, a new class of nanoengineered hydrogel‐based cell‐laden bioinks is introduced, that can be printed into 3D, anatomically accurate, multicellular blood vessels to recapitulate both the physical and chemical microenvironments of native human vasculature. A remarkably unique characteristic of this bioink is that regardless of cell density, it demonstrates a high printability and ability to protect encapsulated cells against high shear forces in the bioprinting process. 3D bioprinted cells maintain a healthy phenotype and remain viable for nearly one‐month post‐fabrication. Leveraging these properties, the nanoengineered bioink is printed into 3D cylindrical blood vessels, consisting of living co‐culture of endothelial cells and vascular smooth muscle cells, providing the opportunity to model vascular function and pathophysiology. Upon cytokine stimulation and blood perfusion, this 3D bioprinted vessel is able to recapitulate thromboinflammatory responses observed only in advanced in vitro preclinical models or in vivo. Therefore, this 3D bioprinted vessel provides a potential tool to understand vascular disease pathophysiology and assess therapeutics, toxins, or other chemicals.

     
    more » « less