Abstract A stable-frequency transmitter with relative radial acceleration to a receiver will show a change in received frequency over time, known as a “drift rate.” For a transmission from an exoplanet, we must account for multiple components of drift rate: the exoplanet’s orbit and rotation, the Earth’s orbit and rotation, and other contributions. Understanding the drift rate distribution produced by exoplanets relative to Earth, can (a) help us constrain the range of drift rates to check in a Search for Extraterrestrial Intelligence project to detect radio technosignatures, and (b) help us decide validity of signals-of-interest, as we can compare drifting signals with expected drift rates from the target star. In this paper, we modeled the drift rate distribution for ∼5300 confirmed exoplanets, using parameters from the NASA Exoplanet Archive (NEA). We find that confirmed exoplanets have drift rates such that 99% of them fall within the ±53 nHz range. This implies a distribution-informed maximum drift rate ∼4 times lower than previous work. To mitigate the observational biases inherent in the NEA, we also simulated an exoplanet population built to reduce these biases. The results suggest that, for a Kepler-like target star without known exoplanets, ±0.44 nHz would be sufficient to account for 99% of signals. This reduction in recommended maximum drift rate is partially due to inclination effects and bias toward short orbital periods in the NEA. These narrowed drift rate maxima will increase the efficiency of searches and save significant computational effort in future radio technosignature searches.
more »
« less
Nonparametric Density Estimation under Distribution Drift
We study nonparametric density estimation in non-stationary drift settings. Given a sequence of independent samples taken from a distribution that gradually changes in time, the goal is to compute the best estimate for the current distribution. We prove tight minimax risk bounds for both discrete and continuous smooth densities, where the minimum is over all possible estimates and the maximum is over all possible distributions that satisfy the drift constraints. Our technique handles a broad class of drift models and generalizes previous results on agnostic learning under drift.
more »
« less
- Award ID(s):
- 1813444
- PAR ID:
- 10451726
- Date Published:
- Journal Name:
- Proceedings of Machine Learning Research
- Volume:
- 202
- ISSN:
- 2640-3498
- Page Range / eLocation ID:
- 24251-24270
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract We consider the problem of distribution-free predictive inference, with the goal of producing predictive coverage guarantees that hold conditionally rather than marginally. Existing methods such as conformal prediction offer marginal coverage guarantees, where predictive coverage holds on average over all possible test points, but this is not sufficient for many practical applications where we would like to know that our predictions are valid for a given individual, not merely on average over a population. On the other hand, exact conditional inference guarantees are known to be impossible without imposing assumptions on the underlying distribution. In this work, we aim to explore the space in between these two and examine what types of relaxations of the conditional coverage property would alleviate some of the practical concerns with marginal coverage guarantees while still being possible to achieve in a distribution-free setting.more » « less
-
Code snippets are prevalent, but are hard to reuse because they often lack an accompanying environment configuration. Most are not actively maintained, allowing for drift between the most recent possible configuration and the code snippet as the snippet becomes out-of-date over time. Recent work has identified the problem of validating and detecting out-of-date code snippets as the most important consideration for code reuse. However, determining if a snippet is correct, but simply out-of-date, is a non-trivial task. In the best case, breaking changes are well documented, allowing developers to manually determine when a code snippet contains an out-of-date API usage. In the worst case, determining if and when a breaking change was made requires an exhaustive search through previous dependency versions. We present V2, a strategy for determining if a code snippet is out-of-date by detecting discrete instances of configuration drift, where the snippet uses an API which has since undergone a breaking change. Each instance of configuration drift is classified by a failure encountered during validation and a configuration patch, consisting of dependency version changes, which fixes the underlying fault. V2 uses feedback-directed search to explore the possible configuration space for a code snippet, reducing the number of potential environment configurations that need to be validated. When run on a corpus of public Python snippets from prior research, V2 identifies 248 instances of configuration drift.more » « less
-
null (Ed.)ABSTRACT We present a kinetic stability analysis of the solar wind electron distribution function consisting of the Maxwellian core and the magnetic-field aligned strahl, a superthermal electron beam propagating away from the sun. We use an electron strahl distribution function obtained as a solution of a weakly collisional drift-kinetic equation, representative of a strahl affected by Coulomb collisions but unadulterated by possible broadening from turbulence. This distribution function is essentially non-Maxwellian and varies with the heliospheric distance. The stability analysis is performed with the Vlasov–Maxwell linear solver leopard. We find that depending on the heliospheric distance, the core-strahl electron distribution becomes unstable with respect to sunward-propagating kinetic-Alfvén, magnetosonic, and whistler modes, in a broad range of propagation angles. The wavenumbers of the unstable modes are close to the ion inertial scales, and the radial distances at which the instabilities first appear are on the order of 1 au. However, we have not detected any instabilities driven by resonant wave interactions with the superthermal strahl electrons. Instead, the observed instabilities are triggered by a relative drift between the electron and ion cores necessary to maintain zero electric current in the solar wind frame (ion frame). Contrary to strahl distributions modelled by shifted Maxwellians, the electron strahl obtained as a solution of the kinetic equation is stable. Our results are consistent with the previous studies based on a more restricted solution for the electron strahl.more » « less
-
We study an overdamped Langevin equation on the $$d$$-dimensional torus with stationary distribution proportional to $$p = e^{-U / \kappa}$$. When $$U$$ has multiple wells the mixing time of the associated process is exponentially large (of size $$e^{O(1/\kappa)}$$). We add a drift to the Langevin dynamics (without changing the stationary distribution) and obtain quantitative estimates on the mixing time. Our main result shows that the mixing time of the Langevin system can be made arbitrarily small by adding a drift that is sufficiently mixing. We provide one construction of a mixing drift, and our main result can be applied by using this drift with a large amplitude. For numerical purposes, it is useful to keep the size of the imposed drift small, and we show that the smallest allowable amplitude ensures that the mixing time is $$O( d/\kappa^2)$$, which is an order of magnitude smaller than $$e^{O(1/\kappa)}$$.more » « less
An official website of the United States government

