skip to main content


Title: MSDBench: Understanding the Performance Impact of Isolation Domains on Microservice-Based IoT Deployments
We present MSDBench – a set of benchmarks designed to illuminate the effects of deployment choices and operating system ab- stractions on microservices performance in IoT settings. The microser- vices architecture has emerged as a mainstay set of design principles for cloud-hosted, network-facing applications. Their utility as a design pattern for “The Internet of Things” (IoT) is less well understood. We use MSDBench to show the performance impacts of different deploy- ment choices and isolation domain assignments for Linux and Ambience, an experimental operating system specifically designed to support mi- croservices for IoT. These results indicate that deployment choices can have a dramatic impact on microservices performance, and thus, MSD- Bench is a useful tool for developers and researchers in this space.  more » « less
Award ID(s):
1703560
NSF-PAR ID:
10451776
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Gainaru, A.; Zhang, C.; Luo, C.
Date Published:
Journal Name:
Benchmarking, Measuring, and Optimizing
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present MSDBench – a set of benchmarks designed to illuminate the effects of deployment choices and operating system ab- stractions on microservices performance in IoT settings. The microser- vices architecture has emerged as a mainstay set of design principles for cloud-hosted, network-facing applications. Their utility as a design pattern for “The Internet of Things” (IoT) is less well understood. We use MSDBench to show the performance impacts of different deploy- ment choices and isolation domain assignments for Linux and Ambience, an experimental operating system specifically designed to support mi- croservices for IoT. These results indicate that deployment choices can have a dramatic impact on microservices performance, and thus, MSD- Bench is a useful tool for developers and researchers in this space. 
    more » « less
  2. null (Ed.)
    “Notice and choice” is the predominant approach for data privacy protection today. There is considerable user-centered research on providing effective privacy notices but not enough guidance on designing privacy choices. Recent data privacy regulations worldwide established new requirements for privacy choices, but system practitioners struggle to implement legally compliant privacy choices that also provide users meaningful privacy control. We construct a design space for privacy choices based on a user-centered analysis of how people exercise privacy choices in real-world systems. This work contributes a conceptual framework that considers privacy choice as a user-centered process as well as a taxonomy for practitioners to design meaningful privacy choices in their systems. We also present a use case of how we leverage the design space to finalize the design decisions for a real-world privacy choice platform, the Internet of Things (IoT) Assistant, to provide meaningful privacy control in the IoT. 
    more » « less
  3. null (Ed.)
    “Notice and choice” is the predominant approach for data privacy protection today. There is considerable user-centered research on providing efective privacy notices but not enough guidance on designing privacy choices. Recent data privacy regulations worldwide established new requirements for privacy choices, but system practitioners struggle to implement legally compliant privacy choices that also provide users meaningful privacy control. We construct a design space for privacy choices based on a user-centered analysis of how people exercise privacy choices in real-world systems. This work contributes a conceptual framework that considers privacy choice as a user-centered process as well as a taxonomy for practitioners to design meaningful privacy choices in their systems. We also present a use case of how we leverage the design space to fnalize the design decisions for a real-world privacy choice platform, the Internet of Things (IoT) Assistant, to provide meaningful privacy control in the IoT. 
    more » « less
  4. There is increasing interest in deploying building-scale, general-purpose, and high-fidelity sensing to drive emerging smart building applications. However, the real-world deployment of such systems is challenging due to the lack of system and architectural support. Most existing sensing systems are purpose-built, consisting of hardware that senses a limited set of environmental facets, typically at low fidelity and for short-term deployment. Furthermore, prior systems with high-fidelity sensing and machine learning fail to scale effectively and have fewer primitives, if any, for privacy and security. For these reasons, IoT deployments in buildings are generally short-lived or done as a proof of concept. We present the design of Mites, a scalable end-to-end hardware-software system for supporting and managing distributed general-purpose sensors in buildings. Our design includes robust primitives for privacy and security, essential features for scalable data management, as well as machine learning to support diverse applications in buildings. We deployed our Mites system and 314 Mites devices in Tata Consultancy Services (TCS) Hall at Carnegie Mellon University (CMU), a fully occupied, five-story university building. We present a set of comprehensive evaluations of our system using a series of microbenchmarks and end-to-end evaluations to show how we achieved our stated design goals. We include five proof-of-concept applications to demonstrate the extensibility of the Mites system to support compelling IoT applications. Finally, we discuss the real-world challenges we faced and the lessons we learned over the five-year journey of our stack's iterative design, development, and deployment.

     
    more » « less
  5. Summary

    Data‐driven applications are essential to handle the ever‐increasing volume, velocity, and veracity of data generated by sources such as the Web and Internet of Things (IoT) devices. Simultaneously, an event‐driven computational paradigm is emerging as the core of modern systems designed for database queries, data analytics, and on‐demand applications. Modern big data processing runtimes and asynchronous many task (AMT) systems from high performance computing (HPC) community have adopted dataflow event‐driven model. The services are increasingly moving to an event‐driven model in the form of Function as a Service (FaaS) to compose services. An event‐driven runtime designed for data processing consists of well‐understood components such as communication, scheduling, and fault tolerance. Different design choices adopted by these components determine the type of applications a system can support efficiently. We find that modern systems are limited to specific sets of applications because they have been designed with fixed choices that cannot be changed easily. In this paper, we present a loosely coupled component‐based design of a big data toolkit where each component can have different implementations to support various applications. Such a polymorphic design would allow services and data analytics to be integrated seamlessly and expand from edge to cloud to HPC environments.

     
    more » « less