skip to main content


This content will become publicly available on August 1, 2024

Title: Generative Design of Sheet Metal Structures
Sheet Metal (SM) fabrication is perhaps one of the most common metalworking technique. Despite its prevalence, SM design is manual and costly, with rigorous practices that restrict the search space, yielding suboptimal results. In contrast, we present a framework for the first automatic design of SM parts. Focusing on load bearing applications, our novel system generates a high-performing manufacturable SM that adheres to the numerous constraints that SM design entails: The resulting part minimizes manufacturing costs while adhering to structural, spatial, and manufacturing constraints. In other words, the part should be strong enough, not disturb the environment, and adhere to the manufacturing process. These desiderata sum up to an elaborate, sparse, and expensive search space. Our generative approach is a carefully designed exploration process, comprising two steps. In Segment Discovery connections from the input load to attachable regions are accumulated, and during Segment Composition the most performing valid combination is searched for. For Discovery, we define a slim grammar, and sample it for parts using a Markov-Chain Monte Carlo (MCMC) approach, ran in intercommunicating instances (i.e, chains) for diversity. This, followed by a short continuous optimization, enables building a diverse and high-quality library of substructures. During Composition, a valid and minimal cost combination of the curated substructures is selected. To improve compliance significantly without additional manufacturing costs, we reinforce candidate parts onto themselves --- a unique SM capability called self-riveting. we provide our code and data in https://github.com/amir90/AutoSheetMetal. We show our generative approach produces viable parts for numerous scenarios. We compare our system against a human expert and observe improvements in both part quality and design time. We further analyze our pipeline's steps with respect to resulting quality, and have fabricated some results for validation. We hope our system will stretch the field of SM design, replacing costly expert hours with minutes of standard CPU, making this cheap and reliable manufacturing method accessible to anyone.  more » « less
Award ID(s):
2017927
NSF-PAR ID:
10451826
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
42
Issue:
4
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Systems engineering processes coordinate the efforts of many individuals to design a complex system. However, the goals of the involved individuals do not necessarily align with the system-level goals. Everyone, including managers, systems engineers, subsystem engineers, component designers, and contractors, is self-interested. It is not currently understood how this discrepancy between organizational and personal goals affects the outcome of complex systems engineering processes. To answer this question, we need a systems engineering theory that accounts for human behavior. Such a theory can be ideally expressed as a dynamic hierarchical network game of incomplete information. The nodes of this network represent individual agents and the edges the transfer of information and incentives. All agents decide independently on how much effort they should devote to a delegated task by maximizing their expected utility; the expectation is over their beliefs about the actions of all other individuals and the moves of nature. An essential component of such a model is the quality function, defined as the map between an agent’s effort and the quality of their job outcome. In the economics literature, the quality function is assumed to be a linear function of effort with additive Gaussian noise. This simplistic assumption ignores two critical factors relevant to systems engineering: (1) the complexity of the design task, and (2) the problem-solving skills of the agent. Systems engineers establish their beliefs about these two factors through years of job experience. In this paper, we encode these beliefs in clear mathematical statements about the form of the quality function. Our approach proceeds in two steps: (1) we construct a generative stochastic model of the delegated task, and (2) we develop a reduced order representation suitable for use in a more extensive game-theoretic model of a systems engineering process. Focusing on the early design stages of a systems engineering process, we model the design task as a function maximization problem and, thus, we associate the systems engineer’s beliefs about the complexity of the task with their beliefs about the complexity of the function being maximized. Furthermore, we associate an agent’s problem solving-skills with the strategy they use to solve the underlying function maximization problem. We identify two agent types: “naïve” (follows a random search strategy) and “skillful” (follows a Bayesian global optimization strategy). Through an extensive simulation study, we show that the assumption of the linear quality function is only valid for small effort levels. In general, the quality function is an increasing, concave function with derivative and curvature that depend on the problem complexity and agent’s skills. 
    more » « less
  2. Direct digital manufacturing (DDM) is the creation of a physical part directly from a computer-aided design (CAD) model with minimal process planning and is typically applied to additive manufacturing (AM) processes to fabricate complex geometry. AM is preferred for DDM because of its minimal user input requirements; as a result, users can focus on exploiting other advantages of AM, such as the creation of intricate mechanisms that require no assembly after fabrication. Such assembly free mechanisms can be created using DDM during a single build process. In contrast, subtractive manufacturing (SM) enables the creation of higher strength parts that do not suffer from the material anisotropy inherent in AM. However, process planning for SM is more difficult than it is for AM due to geometric constraints imposed by the machining process; thus, the application of SM to the fabrication of assembly free mechanisms is challenging. This research describes a voxel-based computer-aided manufacturing (CAM) system that enables direct digital subtractive manufacturing (DDSM) of an assembly free mechanism. Process planning for SM involves voxel-by-voxel removal of material in the same way that an AM process consists of layer-by-layer addition of material. The voxelized CAM system minimizes user input by automatically generating toolpaths based on an analysis of accessible material to remove for a certain clearance in the mechanism's assembled state. The DDSM process is validated and compared to AM using case studies of the manufacture of two assembly free ball-in-socket mechanisms. 
    more » « less
  3. Robot design is a challenging problem involving a balance between the robot’s mechanical design, kinematic structure, and actuation and sensing capabilities. Recent work in computational robot design has focused on mechanical design while assuming that the given actuators are sufficient for the task. At the same time, existing electronics design tools ignore the physical requirements of the actuators and sensors in the circuit. In this paper, we present the first system that closes the loop between the two, incorporating a robot’s mechanical requirements into its circuit design process. We show that the problem can be solved using an iterative search consisting of two parts. First, a dynamic simulator converts the mechanical design and the given task into concrete actuation and sensing requirements. Second, a circuit generator executes a branch-and-bound search to convert the design requirements into a feasible electronic design. The system iterates through both of these steps, a process that is sometimes required since the electronics components add mass that may affect the robot’s design requirements. We demonstrate this approach on two examples — a manipulator and a quadruped — showing in both cases that the system is able to generate a valid electronics design. 
    more » « less
  4. null (Ed.)
    Abstract Cooperative 3D printing (C3DP) is a novel approach to additive manufacturing, where multiple printhead-carrying mobile robots work cooperatively to print the desired part. The core of C3DP is the chunk-based printing strategy in which the desired part is first split into smaller chunks and then the chunks are assigned to individual robots to print and bond. These robots will work simultaneously in a scheduled sequence to print the entire part. Although promising, C3DP lacks a generative approach that enables automatic chunking and scheduling. In this study, we aim to develop a generative approach that can automatically generate different print schedules for a chunked object by exploring a larger solution space that is often beyond the capability of human cognition. The generative approach contains (1) a random generator of diverse print schedules based on an adjacency matrix that represents a directed dependency tree structure of chunks; (2) a set of geometric constraints against which the randomly generated schedules will be checked for validation, and (3) a printing time evaluator for comparing the performance of all valid schedules. We demonstrate the efficacy of the generative approach using two case studies: a large simple rectangular bar and a miniature folding sport utility vehicle (SUV) with more complicated geometry. This study demonstrates that the generative approach can generate a large number of different print schedules for collision-free C3DP, which cannot be explored solely using human heuristics. This generative approach lays the foundation for building the optimization approach of C3DP scheduling. 
    more » « less
  5. Abstract

    Automated optical inspection (AOI) is increasingly advocated for in situ quality monitoring of additive manufacturing (AM) processes. The availability of layerwise imaging data improves the information visibility during fabrication processes and is thus conducive to performing online certification. However, few, if any, have investigated the high-speed contact image sensors (CIS) (i.e., originally developed for document scanners and multifunction printers) for AM quality monitoring. In addition, layerwise images show complex patterns and often contain hidden information that cannot be revealed in a single scale. A new and alternative approach will be to analyze these intrinsic patterns with multiscale lenses. Therefore, the objective of this article is to design and develop an AOI system with contact image sensors for multiresolution quality inspection of layerwise builds in additive manufacturing. First, we retrofit the AOI system with contact image sensors in industrially relevant 95 mm/s scanning speed to a laser-powder-bed-fusion (LPBF) machines. Then, we design the experiments to fabricate nine parts under a variety of factor levels (e.g., gas flow blockage, re-coater damage, laser power changes). In each layer, the AOI system collects imaging data of both recoating powder beds before the laser fusion and surface finishes after the laser fusion. Second, layerwise images are pre-preprocessed for alignment, registration, and identification of regions of interests (ROIs) of these nine parts. Then, we leverage the wavelet transformation to analyze ROI images in multiple scales and further extract salient features that are sensitive to process variations, instead of extraneous noises. Third, we perform the paired comparison analysis to investigate how different levels of factors influence the distribution of wavelet features. Finally, these features are shown to be effective in predicting the extent of defects in the computed tomography (CT) data of layerwise AM builds. The proposed framework of multiresolution quality inspection is evaluated and validated using real-world AM imaging data. Experimental results demonstrated the effectiveness of the proposed AOI system with contact image sensors for online quality inspection of layerwise builds in AM processes.

     
    more » « less