The global metal market, expected to exceed $18.5 trillion by 2030, faces costly inefficiencies from defects in alloy manufacturing. Although microstructure analysis has improved alloy performance, current numerical models struggle to accurately simulate solidification. In this research, we thus introduce AlloyGAN - the first domain-driven Conditional Generative Adversarial Network (cGAN) involving domain prior for generating alloy microstructures of previously not considered chemical and manufactural compositions. AlloyGAN improves cGAN process by involving prior factors from solidification reaction to generate scientifically valid images of alloy microstructure given basic alloy manufacturing compositions. It achieves a faster and equally accurate alternative to traditional material science methods for assessing alloy microstructures. We contribute (1) a novel Alloy-GAN design for rapid alloy optimization; (2) unique methods that inject prior knowledge of the chemical reaction into cGAN-based models; and (3) metrics from machine learning and chemistry for generation evaluation. Our approach highlights the promise of GAN-based models in the scientific discovery of materials. AlloyGAN has successfully transitioned into an AIGC startup with a core focus on model-generated metallography. We open its interactive demo at: https://deepalloy.com/
more »
« less
Generative Design of Sheet Metal Structures
Sheet Metal (SM) fabrication is perhaps one of the most common metalworking technique. Despite its prevalence, SM design is manual and costly, with rigorous practices that restrict the search space, yielding suboptimal results. In contrast, we present a framework for the first automatic design of SM parts. Focusing on load bearing applications, our novel system generates a high-performing manufacturable SM that adheres to the numerous constraints that SM design entails: The resulting part minimizes manufacturing costs while adhering to structural, spatial, and manufacturing constraints. In other words, the part should be strong enough, not disturb the environment, and adhere to the manufacturing process. These desiderata sum up to an elaborate, sparse, and expensive search space. Our generative approach is a carefully designed exploration process, comprising two steps. In Segment Discovery connections from the input load to attachable regions are accumulated, and during Segment Composition the most performing valid combination is searched for. For Discovery, we define a slim grammar, and sample it for parts using a Markov-Chain Monte Carlo (MCMC) approach, ran in intercommunicating instances (i.e, chains) for diversity. This, followed by a short continuous optimization, enables building a diverse and high-quality library of substructures. During Composition, a valid and minimal cost combination of the curated substructures is selected. To improve compliance significantly without additional manufacturing costs, we reinforce candidate parts onto themselves --- a unique SM capability called self-riveting. we provide our code and data in https://github.com/amir90/AutoSheetMetal. We show our generative approach produces viable parts for numerous scenarios. We compare our system against a human expert and observe improvements in both part quality and design time. We further analyze our pipeline's steps with respect to resulting quality, and have fabricated some results for validation. We hope our system will stretch the field of SM design, replacing costly expert hours with minutes of standard CPU, making this cheap and reliable manufacturing method accessible to anyone.
more »
« less
- Award ID(s):
- 2017927
- PAR ID:
- 10451826
- Date Published:
- Journal Name:
- ACM Transactions on Graphics
- Volume:
- 42
- Issue:
- 4
- ISSN:
- 0730-0301
- Page Range / eLocation ID:
- 1 to 13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Experimental design techniques such as active search and Bayesian optimization are widely used in the natural sciences for data collection and discovery. However, existing techniques tend to favor exploitation over exploration of the search space, which causes them to get stuck in local optima. This collapse problem prevents experimental design algorithms from yielding diverse high-quality data. In this paper, we extend the Vendi scores—a family of interpretable similarity-based diversity metrics—to account for quality. We then leverage these quality-weighted Vendi scores to tackle experimental design problems across various applications, including drug discovery, materials discovery, and reinforcement learning. We found that quality-weighted Vendi scores allow us to construct policies for experimental design that flexibly balance quality and diversity, and ultimately assemble rich and diverse sets of high-performing data points. Our algorithms led to a 70%–170% increase in the number of effective discoveries compared to baselines.more » « less
-
Additive manufacturing (AM) methods have become mainstream in many industry sectors, especially aeronautics and space structures, where production volume for components is low and designs are highly customized. The frequency of launching space missions is increasing around the world. Some of these missions are sending landers and rovers to moon, mars, and other planets. Such space structures require numerous parts that are unique in design or are produced in just one or a very small production run. Such parts produced for high stake and very expensive missions require complete confidence in the quality of each part. Characterization of parts manufactured by AM is a significant challenge for many existing methods due to the geometric complexity, feature size in the structure, and size of the part. This paper discusses various challenges in applying current characterization methods to the AM sector. Machine learning (ML) methods are considered promising in materials and manufacturing fields. However, generating the training dataset by creating a large number of parts is expensive and impractical. New methods are required to train the ML algorithms on small datasets, especially for parts of unique geometry that are produced in limited production run such as space structures.more » « less
-
Given a part design, the task of manufacturing process selection chooses an appropriate manufacturing process to fabricate it. Prior research has traditionally determined manufacturing processes through direct classification. However, an alternative approach to select a manufacturing process for a new design involves identifying previously produced parts with comparable shapes and materials and learning from them. Finding similar designs from a large dataset of previously manufactured parts is a challenging problem. To solve this problem, researchers have proposed different spatial and spectral shape descriptors to extract shape features including the D2 distribution, spherical harmonics (SH), and the Fast Fourier Transform (FFT), as well as the application of different machine learning methods on various representations of 3D part models like multi-view images, voxel, triangle mesh, and point cloud. However, there has not been a comprehensive analysis of these different shape descriptors, especially for part similarity search aimed at manufacturing process selection. To remedy this gap, this paper presents an in-depth comparative study of these shape descriptors for part similarity search. While we acknowledge the importance of factors like part size, tolerance, and cost in manufacturing process selection, this paper focuses on part shape and material properties only. Our findings show that SH performs the best among non-machine learning methods for manufacturing process selection, yielding 97.96% testing accuracy using the proposed quantitative evaluation metric. For machine learning methods, deep learning on multi-view image representations is best, yielding 99.85% testing accuracy when rotational invariance is not a primary concern. Deep learning on point cloud representations excels, yielding 99.44% testing accuracy when considering rotational invariance.more » « less
-
null (Ed.)Drug discovery aims to find novel compounds with specified chemical property profiles. In terms of generative modeling, the goal is to learn to sample molecules in the intersection of multiple property constraints. This task becomes increasingly challenging when there are many property constraints. We propose to offset this complexity by composing molecules from a vocabulary of substructures that we call molecular rationales. These rationales are identified from molecules as substructures that are likely responsible for each property of interest. We then learn to expand rationales into a full molecule using graph generative models. Our final generative model composes molecules as mixtures of multiple rationale completions, and this mixture is fine-tuned to preserve the properties of interest. We evaluate our model on various drug design tasks and demonstrate significant improvements over state-of-the-art baselines in terms of accuracy, diversity, and novelty of generated compounds.more » « less
An official website of the United States government

