skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiresolution Quality Inspection of Layerwise Builds for Metal 3D Printer and Scanner
Abstract Automated optical inspection (AOI) is increasingly advocated for in situ quality monitoring of additive manufacturing (AM) processes. The availability of layerwise imaging data improves the information visibility during fabrication processes and is thus conducive to performing online certification. However, few, if any, have investigated the high-speed contact image sensors (CIS) (i.e., originally developed for document scanners and multifunction printers) for AM quality monitoring. In addition, layerwise images show complex patterns and often contain hidden information that cannot be revealed in a single scale. A new and alternative approach will be to analyze these intrinsic patterns with multiscale lenses. Therefore, the objective of this article is to design and develop an AOI system with contact image sensors for multiresolution quality inspection of layerwise builds in additive manufacturing. First, we retrofit the AOI system with contact image sensors in industrially relevant 95 mm/s scanning speed to a laser-powder-bed-fusion (LPBF) machines. Then, we design the experiments to fabricate nine parts under a variety of factor levels (e.g., gas flow blockage, re-coater damage, laser power changes). In each layer, the AOI system collects imaging data of both recoating powder beds before the laser fusion and surface finishes after the laser fusion. Second, layerwise images are pre-preprocessed for alignment, registration, and identification of regions of interests (ROIs) of these nine parts. Then, we leverage the wavelet transformation to analyze ROI images in multiple scales and further extract salient features that are sensitive to process variations, instead of extraneous noises. Third, we perform the paired comparison analysis to investigate how different levels of factors influence the distribution of wavelet features. Finally, these features are shown to be effective in predicting the extent of defects in the computed tomography (CT) data of layerwise AM builds. The proposed framework of multiresolution quality inspection is evaluated and validated using real-world AM imaging data. Experimental results demonstrated the effectiveness of the proposed AOI system with contact image sensors for online quality inspection of layerwise builds in AM processes.  more » « less
Award ID(s):
2211273
PAR ID:
10476103
Author(s) / Creator(s):
; ;
Publisher / Repository:
ASME Journal of Manufacturing Science and Engineering
Date Published:
Journal Name:
Journal of Manufacturing Science and Engineering
Volume:
145
Issue:
10
ISSN:
1087-1357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this work, we used in-situ acoustic emission sensors for online monitoring of part quality in laser powder bed fusion (LPBF) additive manufacturing process. Currently, sensors such as thermo-optical imaging cameras and photodiodes are used to observe the laser-material interactions on the top surface of the powder bed. Data from these sensors is subsequently analyzed to detect onset of incipient flaws, e.g., porosity. However, these existing sensing modalities are unable to penetrate beyond the top surface of the powder bed. Consequently, there is a burgeoning need to detect thermal phenomena in the bulk volume of the part buried under the powder, as they are linked to such flaws as support failures, poor surface finish, microstructure heterogeneity, among others. Herein, four passive acoustic emission sensors were installed in the build plate of an EOS M290 LPBF system. Acoustic emission data was acquired during processing of stainless steel 316L samples under differing parameter settings and part design variations. The acoustic emission signals were decomposed using wavelet transforms. Subsequently, to localize the origin of AE signals to specific part features, they were spatially synchronized with infrared thermal images. The resulting spatially localized acoustic emission signatures were statistically correlated (R2 > 85%) to multi-scale aspects of part quality, such as thermal-induced part failures, surface roughness, and solidified microstructure (primary dendritic arm spacing). This work takes a critical step toward in-situ, non-destructive evaluation of multi-scale part quality aspects using acoustic emission sensors. 
    more » « less
  2. null (Ed.)
    Additive manufacturing (AM) comprises a group of transformative technologies that are likely to revolutionize manufacturing. In particular, laser-based metal AM techniques can not only fabricate parts with extreme complexity, but also provide innovative means for designing and processing new metallic systems. However, there are still several technical barriers that constrain metal AM. Overcoming these barriers requires a better understanding of the physics underlying the complex and dynamic laser–metal interaction at the heart of many AM processes. This article briefly describes the state of the art of in situ / operando synchrotron x-ray imaging and diffraction for studying metal AM, mostly the laser powder-bed fusion process. It highlights the immediate impact of operando synchrotron studies on the advancement of AM technologies, and presents future research challenges and opportunities. 
    more » « less
  3. Additive manufacturing (AM) presents unique challenges to the nondestructive testing community, not least in that it requires inspection of parts with complex forms that are not possible using subtractive manufacturing. The drive to use AM for parts where design approaches include damage tolerance and retirement-for-cause with high quality and where safety criticality imposes new QA/QC requirements is growing. This article reviews the challenges faced to enable reliable inspection and characterization in metal powderbased AM processes, including issues due to geometric and microstructural features of interest, the limitation on existing and emerging NDT techniques, and remaining technology gaps. The article looks at inspection from powder to finished part, but focuses primarily on monitoring and characterization during the build. In-process, quantitative characterization and monitoring is anticipated to be transformational in advancing adoption of metal AM parts, including offering the potential for inprocess repair or early part rejection during part fabrication. 
    more » « less
  4. null (Ed.)
    Purpose Due to the complexity of and variations in additive manufacturing (AM) processes, there is a level of uncertainty that creates critical issues in quality assurance (QA), which must be addressed by time-consuming and cost-intensive tasks. This deteriorates the process repeatability, reliability and part reproducibility. So far, many AM efforts have been performed in an isolated and scattered way over several decades. In this paper, a systematically integrated holistic view is proposed to achieve QA for AM. Design/methodology/approach A systematically integrated view is presented to ensure the predefined part properties before/during/after the AM process. It consists of four stages, namely, QA plan, prospective validation, concurrent validation and retrospective validation. As a foundation for QA planning, a functional workflow and the required information flows are proposed by using functional design models: Icam DEFinition for Function Modeling. Findings The functional design model of the QA plan provides the systematically integrated view that can be the basis for inspection of AM processes for the repeatability and qualification of AM parts for reproducibility. Research limitations/implications A powder bed fusion process was used to validate the feasibility of this QA plan. Feasibility was demonstrated under many assumptions; real validation is not included in this study. Social implications This study provides an innovative and transformative methodology that can lead to greater productivity and improved quality of AM parts across industries. Furthermore, the QA guidelines and functional design models provide the foundation for the development of a QA architecture and management system. Originality/value This systematically integrated view and the corresponding QA plan can pose fundamental questions to the AM community and initiate new research efforts in the in-situ digital inspection of AM processes and parts. 
    more » « less
  5. The goal of this work to mitigate flaws in metal parts produced from laser powder bed fusion (LPBF) additive manufacturing (AM) process. As a step towards this goal, the objective of this work is to predict the build quality of a part as it is being printed via deep learning of in-situ layer-wise images obtained from an optical camera instrumented in the LPBF machine. To realize this objective, we designed a set of thin-wall features (fins) from Titanium alloy (Ti-6Al-4V) material with varying length-to-thickness ratio. These thin-wall test parts were printed under three different build orientations and in-situ images of their top surface were acquired during the process. The parts were examined offline using X-ray computed tomography (XCT), and their build quality was quantified in terms of statistical features, such as the thickness and consistency of its edges. Subsequently, a deep learning convolutional neural network (CNN) was trained to predict the XCT-derived statistical quality features using the layer-wise optical images of the thin-wall part as inputs. The statistical correlation between CNN-based predictions and XCT-observed quality measurements exceeds 85%. This work has two outcomes consequential to the sustainability of additive manufacturing: (1) It provides practitioners with a guideline for building thin-wall features with minimal defects, and (2) the high correlation between the offline XCT measurements and in-situ sensor-based quality metrics substantiates the potential for applying deep learning approaches for the real-time prediction of build flaws in LPBF. 
    more » « less