skip to main content


This content will become publicly available on October 1, 2024

Title: Multiresolution Quality Inspection of Layerwise Builds for Metal 3D Printer and Scanner
Abstract

Automated optical inspection (AOI) is increasingly advocated for in situ quality monitoring of additive manufacturing (AM) processes. The availability of layerwise imaging data improves the information visibility during fabrication processes and is thus conducive to performing online certification. However, few, if any, have investigated the high-speed contact image sensors (CIS) (i.e., originally developed for document scanners and multifunction printers) for AM quality monitoring. In addition, layerwise images show complex patterns and often contain hidden information that cannot be revealed in a single scale. A new and alternative approach will be to analyze these intrinsic patterns with multiscale lenses. Therefore, the objective of this article is to design and develop an AOI system with contact image sensors for multiresolution quality inspection of layerwise builds in additive manufacturing. First, we retrofit the AOI system with contact image sensors in industrially relevant 95 mm/s scanning speed to a laser-powder-bed-fusion (LPBF) machines. Then, we design the experiments to fabricate nine parts under a variety of factor levels (e.g., gas flow blockage, re-coater damage, laser power changes). In each layer, the AOI system collects imaging data of both recoating powder beds before the laser fusion and surface finishes after the laser fusion. Second, layerwise images are pre-preprocessed for alignment, registration, and identification of regions of interests (ROIs) of these nine parts. Then, we leverage the wavelet transformation to analyze ROI images in multiple scales and further extract salient features that are sensitive to process variations, instead of extraneous noises. Third, we perform the paired comparison analysis to investigate how different levels of factors influence the distribution of wavelet features. Finally, these features are shown to be effective in predicting the extent of defects in the computed tomography (CT) data of layerwise AM builds. The proposed framework of multiresolution quality inspection is evaluated and validated using real-world AM imaging data. Experimental results demonstrated the effectiveness of the proposed AOI system with contact image sensors for online quality inspection of layerwise builds in AM processes.

 
more » « less
Award ID(s):
2211273
NSF-PAR ID:
10476103
Author(s) / Creator(s):
; ;
Publisher / Repository:
ASME Journal of Manufacturing Science and Engineering
Date Published:
Journal Name:
Journal of Manufacturing Science and Engineering
Volume:
145
Issue:
10
ISSN:
1087-1357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The goal of this work is to quantify the link between the design features (geometry), in-situ process sensor signatures, and build quality of parts made using laser powder bed fusion (LPBF) additive manufacturing (AM) process. This knowledge is critical for establishing design rules for AM parts, and to detecting impending build failures using in-process sensor data. As a step towards this goal, the objectives of this work are two-fold: Quantify the effect of the geometry and orientation on the build quality of thin-wall features. To explain further, the geometry-related factor is the ratio of the length of a thin-wall (l) to its thickness (t) defined as the aspect ratio (length-to-thickness ratio, l/t), and the angular orientation (θ) of the part, which is defined as the angle of the part in the X-Y plane relative to the re-coater blade of the LPBF machine. Assess the thin-wall build quality by analyzing images of the part obtained at each layer from an in-situ optical camera using a convolutional neural network. To realize these objectives, we designed a test part with a set of thin-wall features (fins) with varying aspect ratio from Titanium alloy (Ti-6Al-4V) material — the aspect ratio l/t of the thin-walls ranges from 36 to 183 (11 mm long (constant), and 0.06 mm to 0.3 mm in thickness). These thin-wall test parts were built under three angular orientations of 0°, 60°, and 90°. Further, the parts were examined offline using X-ray computed tomography (XCT). Through the offline XCT data, the build quality of the thin-wall features in terms of their geometric integrity is quantified as a function of the aspect ratio and orientation angle, which suggests a set of design guidelines for building thin-wall structures with LPBF. To monitor the quality of the thin-wall, in-process images of the top surface of the powder bed were acquired at each layer during the build process. The optical images are correlated with the post build quantitative measurements of the thin-wall through a deep learning convolutional neural network (CNN). The statistical correlation (Pearson coefficient, ρ) between the offline XCT measured thin-wall quality, and CNN predicted measurement ranges from 80% to 98%. Consequently, the impending poor quality of a thin-wall is captured from in-situ process data. 
    more » « less
  2. Powder Bed Fusion (PBF) is a type of additive manufacturing process that builds parts out of metal powder in a layerwise fashion. Quality control (QC) remains an unsolved problem for PBF. Data-driven models of PBF are expensive to train and maintain, in terms of materials and machine time, because they are sensitive to changes in processing conditions.The length and time scale discrepancies of the process make physics-based modeling impractical to implement. We propose monitoring PBF with an Ensemble Kalman Filter (EnKF). The EnKF combines the computational efficiency of datadriven models with the flexibility of physics-based models, while mitigating the flaws of either method. We validate EnKF performance for linear process models, using finite element method data in place of measured experimental data. We show that the EnKF can reduce the error signal 2-norm and 1-norm relative to the open loop model by as much as 75%. 
    more » « less
  3. The goal of this work to mitigate flaws in metal parts produced from laser powder bed fusion (LPBF) additive manufacturing (AM) process. As a step towards this goal, the objective of this work is to predict the build quality of a part as it is being printed via deep learning of in-situ layer-wise images obtained from an optical camera instrumented in the LPBF machine. To realize this objective, we designed a set of thin-wall features (fins) from Titanium alloy (Ti-6Al-4V) material with varying length-to-thickness ratio. These thin-wall test parts were printed under three different build orientations and in-situ images of their top surface were acquired during the process. The parts were examined offline using X-ray computed tomography (XCT), and their build quality was quantified in terms of statistical features, such as the thickness and consistency of its edges. Subsequently, a deep learning convolutional neural network (CNN) was trained to predict the XCT-derived statistical quality features using the layer-wise optical images of the thin-wall part as inputs. The statistical correlation between CNN-based predictions and XCT-observed quality measurements exceeds 85%. This work has two outcomes consequential to the sustainability of additive manufacturing: (1) It provides practitioners with a guideline for building thin-wall features with minimal defects, and (2) the high correlation between the offline XCT measurements and in-situ sensor-based quality metrics substantiates the potential for applying deep learning approaches for the real-time prediction of build flaws in LPBF. 
    more » « less
  4. Additive Manufacturing (AM) is a crucial component of the smart manufacturing industry. In this paper, we propose an automated quality grading system for the fused deposition modeling (FDM) process as one of the major AM processes using a developed real-time deep convolutional neural network (CNN) model. The CNN model is trained offline using the images of the internal and surface defects in the layer-by-layer deposition of materials and tested online by studying the performance of detecting and grading the failure in AM process at different extruder speeds and temperatures. The model demonstrates an accuracy of 94% and specificity of 96%, as well as above 75% in measures of the F-score, the sensitivity, and the precision for classifying the quality of the AM process in five grades in real-time. The high-performance of the model could not be achieved with the values usually used for printing temperature and printing speed, only in addition with much higher values. The proposed online model adds an automated, consistent, and non-contact quality control signal to the AM process. The quality monitoring signal can also be used by the AM machine to stop the AM process and eliminate the sophisticated inspection of the printed parts for internal defects. The proposed quality control model ensures reliable parts with fewer quality hiccups while improving performance in time and material consumption. 
    more » « less
  5. null (Ed.)
    Purpose Due to the complexity of and variations in additive manufacturing (AM) processes, there is a level of uncertainty that creates critical issues in quality assurance (QA), which must be addressed by time-consuming and cost-intensive tasks. This deteriorates the process repeatability, reliability and part reproducibility. So far, many AM efforts have been performed in an isolated and scattered way over several decades. In this paper, a systematically integrated holistic view is proposed to achieve QA for AM. Design/methodology/approach A systematically integrated view is presented to ensure the predefined part properties before/during/after the AM process. It consists of four stages, namely, QA plan, prospective validation, concurrent validation and retrospective validation. As a foundation for QA planning, a functional workflow and the required information flows are proposed by using functional design models: Icam DEFinition for Function Modeling. Findings The functional design model of the QA plan provides the systematically integrated view that can be the basis for inspection of AM processes for the repeatability and qualification of AM parts for reproducibility. Research limitations/implications A powder bed fusion process was used to validate the feasibility of this QA plan. Feasibility was demonstrated under many assumptions; real validation is not included in this study. Social implications This study provides an innovative and transformative methodology that can lead to greater productivity and improved quality of AM parts across industries. Furthermore, the QA guidelines and functional design models provide the foundation for the development of a QA architecture and management system. Originality/value This systematically integrated view and the corresponding QA plan can pose fundamental questions to the AM community and initiate new research efforts in the in-situ digital inspection of AM processes and parts. 
    more » « less