skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photodissolution of Rare Earth Elements and Dissolved Organic Carbon from Subbituminous Coal: Effects of Environmental Variables and Implications for Biogeochemical Cycling
Rare earth elements (REEs) make up a group of unique elements with diverse applications in energy, medicine, and technology. Increasing global demand and limited supplies have led to exploring the economic viability of domestic feedstock extraction from sources such as coal. Little is known about the release of REEs from coal due to the environmentally driven processes of photodissolution. In this study, the photodissolution of water-soluble REEs and dissolved organic carbon (DOC) from subbituminous coal was investigated using laboratory-simulated sunlight exposures. The effects of the solar intensity, temperature, and exposure time on photodissolution were also examined. Following irradiation, water-soluble REE and DOC concentrations increased significantly above nonirradiated controls, indicating photodissolution is a significant process. Both solar intensity and exposure time influenced photodissolution rates, while temperature did not. Results from this study provide motivation to further investigate the photodissolution pathways of REEs from subbituminous coal and interaction with DOC ligands, given that photosolubilized REEs may be organic associated. These findings may have implications, both positive and negative, for the environmental impact of REEs.  more » « less
Award ID(s):
2018417
PAR ID:
10451831
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Science & Technology Letters
ISSN:
2328-8930
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High elevation mountain watersheds are undergoing rapid warming and declining snow fractions worldwide, causing earlier and quicker snowmelt. Understanding how this hydrologic shift affects subsurface flow paths, biogeochemical reactions, and solute export has been challenging due to the entanglement of hydrological and biogeochemical processes. Coal Creek, a high-elevation catchment (2,700 3,700 m, 53 km2) in Colorado, is experiencing a higher rate of warming than surrounding low-lying areas. This warming corresponds with dynamic and increased responses from biogenic solutes and dissolved organic carbon (DOC), whereas the behavior of geogenic solutes and dissolved inorganic carbon (DIC) has remained relatively unchanged. DOC has experienced the largest concentration increase (>3x), with annual average flow weighted concentrations positively correlated to average annual temperature. This suggests temperature is the main driver of increasing DOC levels. Although DOC and DIC response to warming is influenced by many drivers, the relative contribution of each remains unknown. DOC and DIC were analyzed to incorporate both carbon component products of soil respiration (DOC and CO2) and to represent high solute concentrations transported by shallow (DOC) versus deep (DIC) subsurface flow. The contrasting behavior of these carbon solutes indicates climate change and warming are driving changes in organic matter decomposition and soil respiration. Modeling results from the process-based model HBV-BioRT show increased temperatures cause earlier snowmelt and streamflow generation and lower peak discharge. As stream flow generation occurs earlier, so do DOC flushing and DIC dilution events. Additionally, post-snowmelt periods show greater DOC production and concentrations under warming scenarios. Results indicated increased production of DOC in post-snowmelt periods. DOC is then flushed out by earlier snowmelt partitioned through the shallow soil zone. Most process-based studies lack a watershed-scale understanding of carbon transformation and flow path alterations. This work demonstrates complex hydrologic and biogeochemical coupling at the watershed scale to illustrate how water flow paths and chemistry are responding to a changing climate in highelevation mountain watersheds. 
    more » « less
  2. null (Ed.)
    Abstract. Outgassing of carbon dioxide (CO2) from freshwater ecosystems comprises 12 %–25 % of the total carbon flux from soils and bedrock. This CO2 is largely derived from both biodegradation and photodegradation of terrestrial dissolved organic carbon (DOC) entering lakes from wetlands and soils in the watersheds of lakes. In spite of the significance of these two processes in regulating rates of CO2 outgassing, their relative importance remains poorly understood in lake ecosystems. In this study, we used groundwater from the watersheds of one subtropical and three temperate lakes of differing trophic status to simulate the effects of increases in terrestrial DOC from storm events. We assessed the relative importance of biodegradation and photodegradation in oxidizing DOC to CO2. We measured changes in DOC concentration, colored dissolved organic carbon (specificultraviolet absorbance – SUVA320; spectral slope ratio – Sr), dissolved oxygen, and dissolved inorganic carbon (DIC) in short-term experiments from May–August 2016. In all lakes, photodegradationled to larger changes in DOC and DIC concentrations and opticalcharacteristics than biodegradation. A descriptive discriminant analysisshowed that, in brown-water lakes, photodegradation led to the largestdeclines in DOC concentration. In these brown-water systems, ∼ 30 % of the DOC was processed by sunlight, and a minimum of 1 % was photomineralized. In addition to documenting the importance of photodegradation in lakes, these results also highlight how lakes in the future may respond to changes in DOC inputs. 
    more » « less
  3. null (Ed.)
    Abstract The removal mechanism of refractory deep-ocean dissolved organic carbon (deep-DOC) is poorly understood. The Amundsen Sea Polynya (ASP) serves as a natural test basin for assessing the fate of deep-DOC when it is supplied with a large amount of fresh-DOC and exposed to strong solar radiation during the polynya opening in austral summer. We measured the radiocarbon content of DOC in the water column on the western Amundsen shelf. The radiocarbon content of DOC in the surface water of the ASP reflected higher primary production than in the region covered by sea ice. The radiocarbon measurements of DOC, taken two years apart in the ASP, were different, suggesting rapid cycling of DOC. The increase in DOC concentration was less than expected from the observed increase in radiocarbon content from those at the greatest depths. Based on a radiocarbon mass balance, we show that deep-DOC is consumed along with fresh-DOC in the ASP. Our observations imply that water circulation through the surface layer, where fresh-DOC is produced, may play an important role in global DOC cycling. 
    more » « less
  4. Abstract The thawing of ancient organic carbon stored in arctic permafrost soils, and its oxidation to carbon dioxide (CO2, a greenhouse gas), is predicted to amplify global warming. However, the extent to which organic carbon in thawing permafrost soils will be released as CO2is uncertain. A critical unknown is the extent to which dissolved organic carbon (DOC) from thawing permafrost soils is respired to CO2by microbes upon export of freshly thawed DOC to both dark bottom waters and sunlit surface waters. In this study, we quantified the radiocarbon age and13C composition of CO2produced by microbial respiration of DOC that was leached from permafrost soils and either kept in the dark or exposed to ultraviolet and visible wavelengths of light. We show that permafrost DOC most labile to microbial respiration was as old or older (ages 4,000–11,000 a BP) and more13C‐depleted than the bulk DOC in both dark and light‐exposed treatments, likely indicating respiration of old,13C‐depleted lignin and lipid fractions of the permafrost DOC pool. Light exposure either increased, decreased, or had no effect on the magnitude of microbial respiration of old permafrost DOC relative to respiration in the dark, depending on both the extent of DOC oxidation during exposure to light and the wavelength of light. Together, these findings suggest that photochemical changes affecting the lability of permafrost DOC during sunlight exposure are an important control on the magnitude of microbial respiration of permafrost DOC in arctic surface waters. 
    more » « less
  5. Reclamation of coal fly ash, a legacy waste material, provides an alternative pathway for the recovery of rare earth elements (REEs) while reducing the environmental stresses that stem from traditional mining. The reactive transport processes underlying the recovery of REEs from ash wastes, however, are yet to be fully elucidated owing to the physicochemical complexity of the micro/nanoscale fly ash particles, including the crystallinity of the particulate matrix. In this work, we use transmission electron microscopy to characterize the material properties of ash particles and reveal the impact of crystallinity on the reactive transport processes governing access to and recovery of the encapsulated REEs. Our results show, for the first time, two distinct crystalline structures of REE-bearing aluminosilicate particles: dense amorphous matrices that facilitate the exchange of chemical species through their lattice interstices and porous polycrystalline matrices characterized by connected intraparticle pores and chemical inertness to leaching solutions. Notably, the presence of matrix crystallinity, or the lack thereof, governs the extent of reagents consumed parasitically by secondary reactions with the aluminosilicate matrix. Our work reveals how the variability of crystalline structures of the ash matrices hosting REEs defines the pathways for the recovery of REEs, providing key insights required for the development of targeted recovery processes. 
    more » « less