skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global patterns and drivers of leaf photosynthetic capacity: The relative importance of environmental factors and evolutionary history
Abstract Aim Understanding the considerable variability and drivers of global leaf photosynthetic capacity [indicated by the maximum carboxylation rate standardized to 25°C ( V c,max25 )] is an essential step for accurate modelling of terrestrial plant photosynthesis and carbon uptake under climate change. Although current environmental conditions have often been connected with empirical and theoretical models to explain global V c,max25 variability through acclimatization and adaptation, long‐term evolutionary history has largely been neglected, but might also explicitly play a role in shaping the V c,max25 variability. Location Global. Time period Contemporary. Major taxa studied Terrestrial plants. Methods We compiled a geographically comprehensive global dataset of V c,max25 for C 3 plants ( n  = 6917 observations from 2157 species and 425 sites covering all major biomes world‐wide), explored the biogeographical and phylogenetic patterns of V c,max25 , and quantified the relative importance of current environmental factors and evolutionary history in driving global V c,max25 variability. Results We found that V c,max25 differed across different biomes, with higher mean values in relatively drier regions, and across different life‐forms, with higher mean values in non‐woody relative to woody plants and in legumes relative to non‐leguminous plants. The values of V c,max25 displayed a significant phylogenetic signal and diverged in a contrasting manner across phylogenetic groups, with a significant trend along the evolutionary axis towards a higher V c,max25 in more modern clades. A Bayesian phylogenetic linear mixed model revealed that evolutionary history (indicated by phylogeny and species) explained nearly 3‐fold more of the variation in global V c,max25 than present‐day environment (53 vs. 18%). Main conclusions These findings contribute to a comprehensive assessment of the patterns and drivers of global V c,max25 variability, highlighting the importance of evolutionary history in driving global V c,max25 variability, hence terrestrial plant photosynthesis.  more » « less
Award ID(s):
2045968 2017804
PAR ID:
10451912
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Global Ecology and Biogeography
Volume:
32
Issue:
5
ISSN:
1466-822X
Page Range / eLocation ID:
668 to 682
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multiple, simultaneous environmental changes, in climatic/abiotic factors, interacting species, and direct human influences, are impacting natural populations and thus biodiversity, ecosystem services, and evolutionary trajectories. Determining whether the magnitudes of the population impacts of abiotic, biotic, and anthropogenic drivers differ, accounting for their direct effects and effects mediated through other drivers, would allow us to better predict population fates and design mitigation strategies. We compiled 644 paired values of the population growth rate ( λ ) from high and low levels of an identified driver from demographic studies of terrestrial plants. Among abiotic drivers, natural disturbance (not climate), and among biotic drivers, interactions with neighboring plants had the strongest effects on λ . However, when drivers were combined into the 3 main types, their average effects on λ did not differ. For the subset of studies that measured both the average and variability of the driver, λ was marginally more sensitive to 1 SD of change in abiotic drivers relative to biotic drivers, but sensitivity to biotic drivers was still substantial. Similar impact magnitudes for abiotic/biotic/anthropogenic drivers hold for plants of different growth forms, for different latitudinal zones, and for biomes characterized by harsher or milder abiotic conditions, suggesting that all 3 drivers have equivalent impacts across a variety of contexts. Thus, the best available information about the integrated effects of drivers on all demographic rates provides no justification for ignoring drivers of any of these 3 types when projecting ecological and evolutionary responses of populations and of biodiversity to environmental changes. 
    more » « less
  2. Summary It is well‐known that the mycorrhizal type of plants correlates with different modes of nutrient cycling and availability. However, the differences in drought tolerance between arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) plants remains poorly characterized.We synthesized a global dataset of four hydraulic traits associated with drought tolerance of 1457 woody species (1139 AM and 318 EcM species) at 308 field sites. We compared these traits between AM and EcM species, with evolutionary history (i.e. angiosperms vs gymnosperms), water availability (i.e. aridity index) and biomes considered as additional factors.Overall, we found that evolutionary history and biogeography influenced differences in hydraulic traits between mycorrhizal types. Specifically, we found that (1) AM angiosperms are less drought‐tolerant than EcM angiosperms in wet regions or biomes, but AM gymnosperms are more drought‐tolerant than EcM gymnosperms in dry regions or biomes, and (2) in both angiosperms and gymnosperms, variation in hydraulic traits as well as their sensitivity to water availability were higher in AM species than in EcM species.Our results suggest that global shifts in water availability (especially drought) may alter the biogeographic distribution and abundance of AM and EcM plants, with consequences for ecosystem element cycling and ultimately, the land carbon sink. 
    more » « less
  3. Global demand for food and bioenergy production has increased rapidly, while the area of arable land has been declining for decades due to damage caused by erosion, pollution, sea level rise, urban development, soil salinization, and water scarcity driven by global climate change. In order to overcome this conflict, there is an urgent need to adapt conventional agriculture to water-limited and hotter conditions with plant crop systems that display higher water-use efficiency (WUE). Crassulacean acid metabolism (CAM) species have substantially higher WUE than species performing C 3 or C 4 photosynthesis. CAM plants are derived from C 3 photosynthesis ancestors. However, it is extremely unlikely that the C 3 or C 4 crop plants would evolve rapidly into CAM photosynthesis without human intervention. Currently, there is growing interest in improving WUE through transferring CAM into C 3 crops. However, engineering a major metabolic plant pathway, like CAM, is challenging and requires a comprehensive deep understanding of the enzymatic reactions and regulatory networks in both C 3 and CAM photosynthesis, as well as overcoming physiometabolic limitations such as diurnal stomatal regulation. Recent advances in CAM evolutionary genomics research, genome editing, and synthetic biology have increased the likelihood of successful acceleration of C 3 -to-CAM progression. Here, we first summarize the systems biology-level understanding of the molecular processes in the CAM pathway. Then, we review the principles of CAM engineering in an evolutionary context. Lastly, we discuss the technical approaches to accelerate the C 3 -to-CAM transition in plants using synthetic biology toolboxes. 
    more » « less
  4. Abstract Gymnosperms encompass a diverse group of mostly woody plants with high ecological and economic value, yet little is known about the scope and organization of fine‐root trait diversity among gymnosperms due to the undersampling of most gymnosperm families and the dominance of angiosperm groups in recent syntheses.New and existing data were compiled for morphological traits (root diameter, length, tissue density, specific root length [SRL] and specific root area [SRA]), the architectural trait branching ratio, root nitrogen content [N] and mycorrhizal colonization. We used phylogenetic least squares regression and principal component analysis to determine trait–trait relationships and coordination across 66 species, representing 11 of the 12 extant gymnosperm families from boreal, temperate, subtropical and tropical biomes. Finally, we compared the relationship between family divergence time and mean trait values to determine whether evolutionary history structured variation in fine‐root traits within the gymnosperm phylogeny.Wide variation in gymnosperm root traits could be largely captured by two primary axes of variation defined by SRL and diameter, and root tissue density and root nitrogen, respectively. However, individual root length and SRA each had significant correlations with traits defining both main axes of variation. Neither mycorrhizal colonization nor root branching ratio were closely related to other traits. We did not observe a directional evolution of mean trait values from older to more recently diverged gymnosperm families.Synthesis. Despite their unique evolutionary history, gymnosperms display a root economic space similar to that identified in angiosperms, likely reflecting common constraints on plants adapting to diverse environments in both groups. These findings provide greater confidence that patterns observed in broad syntheses justly capture patterns of trait diversity among multiple, distinct lineages. Additionally, independence between root architecture and other traits may support greater diversity in below‐ground resource acquisition strategies. Unlike angiosperms, there were no clear trends towards increasingly thin roots over evolutionary time, possibly because of lower diversification rates or unique biogeographic history among gymnosperms, though additional observations are needed to more richly test evolutionary trends among gymnosperms. 
    more » « less
  5. Summary Regions harbouring high unique phylogenetic diversity (PD) are priority targets for conservation. Here, we analyse the global distribution of plant PD, which remains poorly understood despite plants being the foundation of most terrestrial habitats and key to human livelihoods.Capitalising on a recently completed, comprehensive global checklist of vascular plants, we identify hotspots of unique plant PD and test three hypotheses: (1) PD is more evenly distributed than species diversity; (2) areas of highest PD (often called ‘hotspots’) do not maximise cumulative PD; and (3) many biomes are needed to maximise cumulative PD.Our results support all three hypotheses: more than twice as many regions are required to cover 50% of global plant PD compared to 50% of species; regions that maximise cumulative PD substantially differ from the regions with outstanding individual PD; and while (sub‐)tropical moist forest regions dominate across PD hotspots, other forest types and open biomes are also essential.Safeguarding PD in the Anthropocene (including the protection of some comparatively species‐poor areas) is a global, increasingly recognised responsibility. Having highlighted countries with outstanding unique plant PD, further analyses are now required to fully understand the global distribution of plant PD and associated conservation imperatives across spatial scales. 
    more » « less