skip to main content

This content will become publicly available on June 5, 2024

Title: Can convergence in mixed-species flocks lead to evolutionary divergence? Evidence for and methods to test this hypothesis
One of the most fundamental goals of modern biology is to achieve a deep understanding of the origin and maintenance of biodiversity. It has been observed that in some mixed-species animal societies, there appears to be a drive towards some degree of phenotypic trait matching, such as similar coloration or patterning. Here we build on these observations and hypothesize that selection in mixed-species animal societies, such as mixed-species bird flocks, may drive diversification, potentially leading to speciation. We review evidence for possible convergent evolution and even outright mimicry in flocks from southwestern China, where we have observed several cases in which species and subspecies differ from their closest relatives in traits that match particular flock types. However, understanding whether this is phenotypic matching driven by convergence, and whether this divergence has promoted biodiversity, requires testing multiple facets of this hypothesis. We propose a series of steps that can be used to tease apart alternative hypotheses to build our understanding of the potential role of convergence in diversification in participants of mixed-species societies. Even if our social convergence/divergence hypothesis is not supported, the testing at each step should help highlight alternative processes that may affect mixed-species flocks, trait evolution and possible convergence. This article is part of the theme issue ‘Mixed-species groups and aggregations: shaping ecological and behavioural patterns and processes’.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society B: Biological Sciences
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Understanding how ecological communities are assembled remains a grand challenge in ecology with direct implications for charting the future of biodiversity. Trait‐based methods have emerged as the leading approach for quantifying functional community structure (convergence, divergence) but their potential for inferring assembly processes rests on accurately measuring functional dissimilarity among community members. Here, we argue that trait resolution (from finest‐resolution continuous measurements to coarsest‐resolution binary categories) remains a critically overlooked methodological variable, even though categorical classification is known to mask functional variability and inflate functional redundancy among species or individuals.


    We present the first detailed predictions of trait resolution biases and demonstrate, with simulations, how the distortion of signal strength by increasingly coarse‐resolution traits can fundamentally alter functional structure patterns and the interpretation of causative ecological processes (e.g. abiotic filters, biotic interactions). We show that coarser trait data impart different impacts on the signals of divergence and convergence, implying that the role of biotic interactions may be underestimated when using coarser traits. Furthermore, in some systems, coarser traits may overestimate the strength of trait convergence, leading to erroneous support for abiotic processes as the primary drivers of community assembly or change.

    Main conclusions

    Inferences of assembly processes must account for trait resolution to ensure robust conclusions, especially for broad‐scale studies of comparative community assembly and biodiversity change. Despite recent improvements in the collection and availability of trait data, great disparities continue to exist among taxa in the number and availability of continuous traits, which are more difficult to acquire for large numbers of species than coarse categorical assignments. Based on our simulations, we urge the consideration of trait resolution in the design and interpretation of community assembly studies and suggest a suite of practical solutions to address the pitfalls of trait resolution biases.

    more » « less
  2. Muñoz, Martha (Ed.)
    Abstract Selective pressures favor morphologies that are adapted to distinct ecologies, resulting in trait partitioning among ecomorphotypes. However, the effects of these selective pressures vary across taxa, especially because morphology is also influenced by factors such as phylogeny, body size, and functional trade-offs. In this study, we examine how these factors impact functional diversification in mammals. It has been proposed that trait partitioning among mammalian ecomorphotypes is less pronounced at small body sizes due to biomechanical, energetic, and environmental factors that favor a “generalist” body plan, whereas larger taxa exhibit more substantial functional adaptations. We title this the Divergence Hypothesis (DH) because it predicts greater morphological divergence among ecomorphotypes at larger body sizes. We test DH by using phylogenetic comparative methods to examine the postcranial skeletons of 129 species of taxonomically diverse, small-to-medium-sized (<15 kg) mammals, which we categorize as either “tree-dwellers” or “ground-dwellers.” In some analyses, the morphologies of ground-dwellers and tree-dwellers suggest greater between-group differentiation at larger sizes, providing some evidence for DH. However, this trend is neither particularly strong nor supported by all analyses. Instead, a more pronounced pattern emerges that is distinct from the predictions of DH: within-group phenotypic disparity increases with body size in both ground-dwellers and tree-dwellers, driven by morphological outliers among “medium”-sized mammals. Thus, evolutionary increases in body size are more closely linked to increases in within-locomotor-group disparity than to increases in between-group disparity. We discuss biomechanical and ecological factors that may drive these evolutionary patterns, and we emphasize the significant evolutionary influences of ecology and body size on phenotypic diversity. 
    more » « less
  3. null (Ed.)
    Abstract Background Bird plumage exhibits a diversity of colors that serve functional roles ranging from signaling to camouflage and thermoregulation. However, birds must maintain a balance between evolving colorful signals to attract mates, minimizing conspicuousness to predators, and optimizing adaptation to climate conditions. Examining plumage color macroevolution provides a framework for understanding this dynamic interplay over phylogenetic scales. Plumage evolution due to a single overarching process, such as selection, may generate the same macroevolutionary pattern of color variation across all body regions. In contrast, independent processes may partition plumage and produce region-specific patterns. To test these alternative scenarios, we collected color data from museum specimens of an ornate clade of birds, the Australasian lorikeets, using visible-light and UV-light photography, and comparative methods. We predicted that the diversification of homologous feather regions, i.e., patches, known to be involved in sexual signaling (e.g., face) would be less constrained than patches on the back and wings, where new color states may come at the cost of crypsis. Because environmental adaptation may drive evolution towards or away from color states, we tested whether climate more strongly covaried with plumage regions under greater or weaker macroevolutionary constraint. Results We found that alternative macroevolutionary models and varying rates best describe color evolution, a pattern consistent with our prediction that different plumage regions evolved in response to independent processes. Modeling plumage regions independently, in functional groups, and all together showed that patches with similar macroevolutionary models clustered together into distinct regions (e.g., head, wing, belly), which suggests that plumage does not evolve as a single trait in this group. Wing patches, which were conserved on a macroevolutionary scale, covaried with climate more strongly than plumage regions (e.g., head), which diversified in a burst. Conclusions Overall, our results support the hypothesis that the extraordinary color diversity in the lorikeets was generated by a mosaic of evolutionary processes acting on plumage region subsets. Partitioning of plumage regions in different parts of the body provides a mechanism that allows birds to evolve bright colors for signaling and remain hidden from predators or adapt to local climatic conditions. 
    more » « less
  4. Abstract Approaches to macroevolution require integration of its two fundamental components, within a hierarchical framework. Following a companion paper on the origin of variation, I here discuss sorting within an evolutionary hierarchy. Species sorting—sometimes termed species selection in the broad sense, meaning differential origination and extinction owing to intrinsic biological properties—can be split into strict-sense species selection, in which rate differentials are governed by emergent, species-level traits such as geographic range size, and effect macroevolution, in which rates are governed by organism-level traits such as body size; both processes can create hitchhiking effects, indirectly causing the proliferation or decline of other traits. Several methods can operationalize the concept of emergence, so that rigorous separation of these processes is increasingly feasible. A macroevolutionary tradeoff, underlain by the intrinsic traits that influence evolutionary dynamics, causes speciation and extinction rates to covary in many clades, resulting in evolutionary volatility of some clades and more subdued behavior of others; the few clades that break the tradeoff can achieve especially prolific diversification. In addition to intrinsic biological traits at multiple levels, extrinsic events can drive the waxing and waning of clades, and the interaction of traits and events are difficult but important to disentangle. Evolutionary trends can arise in many ways, and at any hierarchical level; descriptive models can be fitted to clade trajectories in phenotypic or functional spaces, but they may not be diagnostic regarding processes, and close attention must be paid to both leading and trailingedges of apparent trends. Biotic interactions can have negative or positive effects on taxonomic diversity within a clade, but cannot be readily extrapolated from the nature of such interactions at the organismic level. The relationships among macroevolutionary currencies through time (taxonomic richness, morphologic disparity, functional variety) are crucial for understanding the nature of evolutionary diversification. A novel approach to diversity-disparity analysis shows that taxonomic diversifications can lag behind, occur in concert with, or precede, increases in disparity. Some overarching issues relating to both the origin and sorting of clades and phenotypes include the macroevolutionary role of mass extinctions, the potential differences between plant and animal macroevolution, whether macroevolutionary processes have changed through geologic time, and the growing human impact on present-day macroevolution. Many challenges remain, but progress is being made on two of the key ones: (a) the integration of variation-generating mechanisms and the multilevel sorting processes that act on that variation, and (b) the integration of paleontological and neontological approaches to historical biology. 
    more » « less
  5. Abstract

    Traits that have arisen multiple times yet still remain rare present a curious paradox. A number of these rare traits show a distinct tippy pattern, where they appear widely dispersed across a phylogeny, are associated with short branches and differ between recently diverged sister species. This phylogenetic pattern has classically been attributed to the trait being an evolutionary dead end, where the trait arises due to some short‐term evolutionary advantage, but it ultimately leads species to extinction. While the higher extinction rate associated with a dead end trait could produce such a tippy pattern, a similar pattern could appear if lineages with the trait speciated slower than other lineages, or if the trait was lost more often that it was gained. In this study, we quantify the degree of tippiness of red flowers in the tomato family, Solanaceae, and investigate the macroevolutionary processes that could explain the sparse phylogenetic distribution of this trait. Using a suite of metrics, we confirm that red‐flowered lineages are significantly overdispersed across the tree and form smaller clades than expected under a null model. Next, we fit 22 alternative models using HiSSE(Hidden State Speciation and Extinction), which accommodates asymmetries in speciation, extinction and transition rates that depend on observed and unobserved (hidden) character states. Results of the model fitting indicated significant variation in diversification rates across the family, which is best explained by the inclusion of hidden states. Our best fitting model differs between the maximum clade credibility tree and when incorporating phylogenetic uncertainty, suggesting that the extreme tippiness and rarity of red Solanaceae flowers makes it difficult to distinguish among different underlying processes. However, both of the best models strongly support a bias towards the loss of red flowers. The best fitting HiSSEmodel when incorporating phylogenetic uncertainty lends some support to the hypothesis that lineages with red flowers exhibit reduced diversification rates due to elevated extinction rates. Future studies employing simulations or targeting population‐level processes may allow us to determine whether red flowers in Solanaceae or other angiosperms clades are rare and tippy due to a combination of processes, or asymmetrical transitions alone.

    more » « less