skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fundamental Bounds on Online Strategic Classification
We study the problem of online binary classification where strategic agents can manipulate their observable features in predefined ways, modeled by a manipulation graph, in order to receive a positive classification. We show this setting differs in fundamental ways from classic (non-strategic) online classification. For instance, whereas in the non-strategic case, a mistake bound of ln |H| is achievable via the halving algorithm when the target function belongs to a known class H, we show that no deterministic algorithm can achieve a mistake bound o(Δ) in the strategic setting, where Δ is the maximum degree of the manipulation graph (even when |H| = O(Δ)). We complement this with a general algorithm achieving mistake bound O(Δ ln |H|). We also extend this to the agnostic setting, and show that this algorithm achieves a Δ multiplicative regret (mistake bound of O(Δ · OPT + Δ · ln |H|)), and that no deterministic algorithm can achieve o(Δ) multiplicative regret. Next, we study two randomized models based on whether the random choices are made before or after agents respond, and show they exhibit fundamental differences. In the first, fractional model, at each round the learner deterministically chooses a probability distribution over classifiers inducing expected values on each vertex (probabilities of being classified as positive), which the strategic agents respond to. We show that any learner in this model has to suffer linear regret. On the other hand, in the second randomized algorithms model, while the adversary who selects the next agent must respond to the learner's probability distribution over classifiers, the agent then responds to the actual hypothesis classifier drawn from this distribution. Surprisingly, we show this model is more advantageous to the learner, and we design randomized algorithms that achieve sublinear regret bounds against both oblivious and adaptive adversaries.  more » « less
Award ID(s):
2212968 2216899
PAR ID:
10451968
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 24th ACM Conference on Economics and Computation
Page Range / eLocation ID:
22 to 58
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The classical Perceptron algorithm provides a simple and elegant procedure for learning a linear classifier. In each step, the algorithm observes the sample's position and label and updates the current predictor accordingly if it makes a mistake. However, in presence of strategic agents that desire to be classified as positive and that are able to modify their position by a limited amount, the classifier may not be able to observe the true position of agents but rather a position where the agent pretends to be. Unlike the original setting with perfect knowledge of positions, in this situation the Perceptron algorithm fails to achieve its guarantees, and we illustrate examples with the predictor oscillating between two solutions forever, making an unbounded number of mistakes even though a perfect large-margin linear classifier exists. Our main contribution is providing a modified Perceptron-style algorithm which makes a bounded number of mistakes in presence of strategic agents with both $$\ell_2$$ and weighted $$\ell_1$$ manipulation costs. In our baseline model, knowledge of the manipulation costs (i.e., the extent to which an agent may manipulate) is assumed. In our most general model, we relax this assumption and provide an algorithm which learns and refines both the classifier and its cost estimates to achieve good mistake bounds even when manipulation costs are unknown. 
    more » « less
  2. We consider a multi-agent multi-armed bandit setting in which n honest agents collaborate over a network to minimize regret but m malicious agents can disrupt learning arbitrarily. Assuming the network is the complete graph, existing algorithms incur O((m + K/n) łog (T) / Δ ) regret in this setting, where K is the number of arms and Δ is the arm gap. For m łl K, this improves over the single-agent baseline regret of O(Kłog(T)/Δ). In this work, we show the situation is murkier beyond the case of a complete graph. In particular, we prove that if the state-of-the-art algorithm is used on the undirected line graph, honest agents can suffer (nearly) linear regret until time is doubly exponential in K and n . In light of this negative result, we propose a new algorithm for which the i -th agent has regret O(( dmal (i) + K/n) łog(T)/Δ) on any connected and undirected graph, where dmal(i) is the number of i 's neighbors who are malicious. Thus, we generalize existing regret bounds beyond the complete graph (where dmal(i) = m), and show the effect of malicious agents is entirely local (in the sense that only the dmal (i) malicious agents directly connected to i affect its long-term regret). 
    more » « less
  3. null (Ed.)
    We address the question of repeatedly learning linear classifiers against agents who are \emph{strategically} trying to \emph{game} the deployed classifiers, and we use the \emph{Stackelberg regret} to measure the performance of our algorithms. First, we show that Stackelberg and external regret for the problem of strategic classification are \emph{strongly incompatible}: i.e., there exist worst-case scenarios, where \emph{any} sequence of actions providing \emph{sublinear} external regret might result in \emph{linear} Stackelberg regret and vice versa. Second, we present a strategy-aware algorithm for minimizing the Stackelberg regret for which we prove nearly matching upper and lower regret bounds. Finally, we provide simulations to complement our theoretical analysis. Our results advance the growing literature of learning from revealed preferences, which has so far focused on smoother'' assumptions from the perspective of the learner and the agents respectively. 
    more » « less
  4. We consider strategic classification, where agents can strategically manipulate their feature vector to a limited extent in order to be classified as positive. Unlike most prior work, our work considers manipulations to be personalized, meaning that agents can have different levels of manipulation abilities (e.g., varying radii for ball manipulations), and unknown to the learner. We formalize the learning problem in an interaction model where the learner first deploys a classifier and the agent manipulates the feature vector within their manipulation set to game the deployed classifier. We investigate various scenarios in terms of the information available to the learner during the interaction, such as observing the original feature vector before or after deployment, observing the manipulated feature vector, or not seeing either the original or the manipulated feature vector, and provide online mistake bounds and PAC sample complexity in these scenarios for ball manipulations. 
    more » « less
  5. We study the multi-agent multi-armed bandit (MAMAB) problem, where agents are factored into overlapping groups. Each group represents a hyperedge, forming a hypergraph over the agents. At each round of interaction, the learner pulls a joint arm (composed of individual arms for each agent) and receives a reward according to the hypergraph structure. Specifically, we assume there is a local reward for each hyperedge, and the reward of the joint arm is the sum of these local rewards. Previous work introduced the multi-agent Thompson sampling (MATS) algorithm and derived a Bayesian regret bound. However, it remains an open problem how to derive a frequentist regret bound for Thompson sampling in this multi-agent setting. To address these issues, we propose an efficient variant of MATS, the epsilon-exploring Multi-Agent Thompson Sampling (eps-MATS) algorithm, which performs MATS exploration with probability epsilon while adopts a greedy policy otherwise. We prove that eps-MATS achieves a worst-case frequentist regret bound that is sublinear in both the time horizon and the local arm size. We also derive a lower bound for this setting, which implies our frequentist regret upper bound is optimal up to constant and logarithm terms, when the hypergraph is sufficiently sparse. Thorough experiments on standard MAMAB problems demonstrate the superior performance and the improved computational efficiency of eps-MATS compared with existing algorithms in the same setting. 
    more » « less