skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2212968

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 7, 2026
  2. Free, publicly-accessible full text available July 13, 2026
  3. Free, publicly-accessible full text available June 30, 2026
  4. Bun, Mark (Ed.)
    In this paper, we relate the philosophical literature on pessimism traps to information cascades, a formal model derived from the economics and mathematics literature. A pessimism trap is a social pattern in which individuals in a community, in situations of uncertainty, copy the sub-optimal actions of others, despite their individual beliefs. This maps nicely onto the concept of an information cascade, which involves a sequence of agents making a decision between two alternatives, with a private signal of the superior alternative and a public history of others' actions. Key results from the economics literature show that information cascades occur with probability one in many contexts, and depending on the strength of the signal, populations can fall into the incorrect cascade very easily and quickly. Once formed, in the absence of external perturbation, a cascade cannot be broken - therefore, we derive an intervention that can be used to nudge a population from an incorrect to a correct cascade and, importantly, maintain the cascade once the subsidy is discontinued. We extend this to the case of multiple communities, each of which might have a different optimal action, and a government providing subsidies that cannot discriminate between communities and does not know which action is optimal for each. We study this both theoretically and empirically. 
    more » « less
    Free, publicly-accessible full text available June 3, 2026
  5. Free, publicly-accessible full text available May 29, 2026
  6. Free, publicly-accessible full text available May 5, 2026
  7. Free, publicly-accessible full text available February 24, 2026
  8. We consider the vulnerability of fairness-constrained learning to malicious noise in the training data. Konstantinov and Lampert (2021) initiated the study of this question and proved that any proper learner can exhibit high vulnerability when group sizes are imbalanced. Here, we present a more optimistic view, showing that if we allow randomized classifiers, then the landscape is much more nuanced. For example, for Demographic Parity we need only incur a Θ(α) loss in accuracy, where α is the malicious noise rate, matching the best possible even without fairness constraints. For Equal Opportunity, we show we can incur an O(sqrt(α)) loss, and give a matching Ω(sqrt(α)) lower bound. For Equalized Odds and Predictive Parity, however, and adversary can indeed force an Ω(1) loss. The key technical novelty of our work is how randomization can bypass simple 'tricks' an adversary can use to amplify its power. These results provide a more fine-grained view of the sensitivity of fairness-constrained learning to adversarial noise in training data. 
    more » « less
  9. A fundamental problem in robust learning is asymmetry: a learner needs to correctly classify every one of exponentially-many perturbations that an adversary might make to a test example, but the attacker only needs to find one successful perturbation. Xiang et al. [2022] proposed an algorithm for patch attacks that reduces the effective number of perturbations from an exponential to a polynomial, and learns using an ERM oracle. However, their guarantee requires the natural examples to be robustly realizable. In this work we consider the non-robustly-realizable case. Our first contribution is to give a guarantee for this setting by utilizing an approach of Feige, Mansour, and Schapire [2015]. Next, we extend our results to a multi-group setting and introduce a novel agnostic multi-robust learning problem where the goal is to learn a predictor that achieves low robust loss on a (potentially) rich collection of subgroups. 
    more » « less