skip to main content


Title: Phosphorus recovery from wastewater using pyridine‐based ion‐exchange resins: Role of impregnated iron oxide nanoparticles and preloaded Lewis acid (Cu 2+ )
Abstract Practitioner points

Fixed‐bed columns with DOW‐HFO, DOW‐Cu, or DOW‐HFO‐Cu—can selectively remove phosphorus over competing anions.

Fixed‐bed columns of above‐listed ion exchangers can produce an effluent P < 6 μg/L.

DOW‐Cu fixed‐bed column ran for ≈500 Bed Volumes before breakthrough when fed Dartmouth WWTP secondary effluent.

Regeneration of the exhausted DOW‐Cu column resulted in ≈90% recovery of the phosphorus.

Regenerant solution was used to generate high‐purity crystals of magnesium ammonium phosphate, MgNH4PO4(struvite), a slow‐release fertilizer.

 
more » « less
NSF-PAR ID:
10452034
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Water Environment Research
Volume:
93
Issue:
5
ISSN:
1061-4303
Page Range / eLocation ID:
p. 774-786
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Practitioner points

    Wastewater carbon recovery via anaerobic digestion with combined heat/power production significantly reduces water resource recovery facility (WRRF) environmental emissions.

    Wastewater phosphorus recovery is of value; however, struvite production exhibits negative environmental impacts due to MgO2production emissions.

    Bioplastics production on imported organic‐rich agri‐food waste can diversify the WRRF portfolio.

    Dairy manure can be successfully integrated into a WRRF for bioplastics production without compromising WRRF performance.

    Diversifying the WRRF products portfolio is a strategy to maximize resource recovery from wastewater while concurrently achieving environmental sustainability.

     
    more » « less
  2. Abstract

    Struvite (MgNH4PO4·6H2O) has been precipitated from liquid waste streams to recover valuable nutrients, such as phosphorus (P) and nitrogen (N), that can be used as an alternative fertilizer‐P source. Because prior research has focused on greenhouse studies, it is necessary to expand struvite evaluations to the field‐scale to include row‐crop responses. The objective of this field study was to evaluate the effects of two struvite materials (electrochemically precipitated struvite, ECST; and chemically precipitated struvite, CPST) relative to other common fertilizer‐P sources (diammonium phosphate, DAP; triple superphosphate, TSP; rock phosphate, RP; and monoammonium phosphate, MAP) on soybean [Glycine max(L.) Merr.] response and economics in two consecutive growing seasons in a P‐deficient, silt‐loam soil (Aquic Fraglossudalfs) in eastern Arkansas. Averaged across years, soybean aboveground tissue P uptake was largest (P < .05) from ECST (28.4 kg ha−1), which was similar to CPST (26.7 kg ha−1) and TSP (25.9 kg ha−1) and was smallest from RP (21.4 kg ha−1). In 2019, seed yield was largest (P < .05) from ECST (4.1 Mg ha−1), which was similar to DAP, CPST, RP, TSP, and MAP, and was smallest from the unamended control (3.6 Mg ha−1). In 2020, seed yield was numerically greatest from CPST (2.8 Mg ha−1) and was numerically smallest from ECST (2.2 Mg ha−1). Results showed that wastewater‐recovered struvite materials have the potential to be a viable, alternative fertilizer‐P source for soybean production in a P‐deficient, silt‐loam soil, but further work is needed to confirm struvite's cost effectiveness.

     
    more » « less
  3. Abstract Practitioner points

    Existing reversible phosphate (Pi) adsorbents cannot effectively discriminate against arsenate (As(V)) due to the similarity in their chemical structure.

    Co‐recovery of As(V) with Pican reduce the recovered product's reuse as a fertilizer.

    An immobilized phosphate‐binding protein (PBP)‐based system can be highly selective for Pieven in the presence of As(V).

    Piconstituted more than 97% of the recovered product, even when As(V) was present at 2‐fold higher concentrations than Pi.

    Immobilized PBP offers advantages over existing Piadsorbents by providing high‐purity Piproducts free of As(V) contamination for reuse.

     
    more » « less
  4. Abstract

    The recovery and reuse of phosphorus (P) from wastewater treatment process is a critical and viable target for sustainable P utilization. This study explores a novel approach of integrating ultrafine mineral particles into hydrogel matrixes for enhancing the capacity of phosphate adsorption. Dolomite‐alginate (DA) hydrogel beads were prepared by integrating ball‐milled, ultrafine dolomite powders into calcium cross‐linked alginate hydrogel matrix. The adsorption isotherms followed a Langmuir–Freundlich adsorption model with higher specific adsorption capacity than those reported in literature. The kinetics of phosphate adsorption suggest that the adsorption is diffusion controlled. Investigation of adsorption capacity at differentpHshowed a maximum adsorption capacity in thepHrange of 7–10. Lastly, we demonstrated that theDAbeads are capable of slowly releasing most of the adsorbed phosphate, which is an important criterion for them to be an effective phosphorous fertilizer. This study, usingDAcomposite hydrogel as an example, demonstrates a promising strategy of immobilizing ultrafine mineral adsorbents into biocompatible hydrogel matrix for effective recovery of phosphorous resource from wastewater.

    Practitioner points

    Integration of dolomite and alginate hydrogel beads is demonstrated using ball milling.

    Ball milling process increases the specific adsorption capacity of dolomite on phosphorus.

    Adsorption isotherms, kinetics, andpHeffects of the dolomite–alginate beads are investigated.

    The dolomite–alginate beads can be used as slow‐release phosphorus fertilizer.

     
    more » « less
  5. null (Ed.)
    Nutrient nitrogen (N) and phosphorus (P) recovery from wastewater is an important challenge for enhanced environmental sustainability. Herein we report the synthesis and properties of mesoporous MgO nanoparticles doped with copper (Cu), iron (Fe), and zinc (Zn) as an alternative low-solubility high-abundance magnesium (Mg) source for crystalline struvite precipitation from nutrient-laden wastewater. Undoped MgO was shown to have the fastest phosphate (PO 4 3− ) adsorption kinetics with a k 2 value of 0.9 g g −1 min −1 at room temperature. The corresponding rate constant decreased for Cu–MgO (0.175 g g −1 min −1 ), Zn–MgO (0.145 g g −1 min −1 ), and Fe–MgO (0.02 g g −1 min −1 ). Undoped MgO resulted in the highest PO 4 3− removal at 94%, while Cu–MgO, Fe–MgO, and Zn–MgO resulted in 90%, 66% and 66%, respectively, under equivalent reaction conditions. All dopants resulted in the production of struvite as the main product with the incorporation of the transition metals into the struvite crystal lattice. X-ray absorption spectroscopy (XAS) showed that the majority of the Cu, Fe, and Zn were primarily in the +2, +3, and +2 oxidation states, respectively. XAS also showed that the Cu atoms exist in elongated octahedral coordination, while Fe was shown to be in octahedral coordination. Zn was shown to be in a complex disordered environment with octahedral sites coexisting with the majority of the tetrahedral sites. Finally, X-ray photoelectron spectroscopy data suggest a two-fold struvite surface enrichment with dopant metals, with Cu exhibiting an interesting new local binding structure. The dopant concentrations utilized were consistent with those found in natural Mg minerals, suggesting that (a) utilizing natural mineral periclase as the Mg source for struvite production can result in struvite formation, albeit at the expense of the reaction kinetics and overall yields, while also (b) supplying essential micronutrients, such as Zn and Cu, necessary for balanced nutrient uptake. 
    more » « less