null
                            (Ed.)
                        
                    
            
                            Simultaneous major nutrient nitrogen (N) and phosphorus (P) recovery from wastewater is key to achieving food–energy–water sustainable development. In this work, we elucidate the reaction kinetics, crystalline structure and chemical composition of the resulting solid precipitate obtained from simulated N and P containing wastewater solution using widely abundant low solubility magnesite (MgCO 3 ) particles in the presence of common transition metal ions, such as zinc (Zn 2+ ) or copper (Cu 2+ ). We show that up to 100 ppm Zn 2+ from the simulated wastewater can be incorporated into the struvite lattice as isolated distorted Zn 2+ while even at very low concentrations of ∼5 ppm Cu 2+ ions almost completely inhibit struvite crystal formation. The resulting solid precipitate distinctly affects soil microbial biomass carbon and soil dehydrogenase enzyme activity. These results show a cautionary case where abundant natural mineral MgCO 3 exhibits very different chemistry in Cu 2+ containing simulated wastewater and does not readily adsorb or retain NH 4 + and PO 4 3− ions, unlike less sustainable but more water-soluble magnesium sources, such as MgCl 2 , at the equivalent [Mg 2+ ] : [NH 4 + ] : [PO 4 3− ] molar ratio of 1.4 : 1 : 1. 
                        more » 
                        « less   
                     An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    