skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Peptides as key components in the design of non‐viral vectors for gene delivery
Abstract Successful clinical implementation of gene delivery relies on the use of viral or non‐viral based vectors to package and protect the therapeutic nucleic acid. These vehicles must also be able to direct the fate of the cargo once it has entered the cell to ensure that the nucleic acid is functional, and the desired outcome is achieved. Compared to viral vectors, non‐viral vectors have the advantage of incorporating different material types such as lipids, polymers, and peptides to tune overall safety and efficacy. Peptides are especially powerful when used in gene delivery vectors as they are able to increase gene delivery efficacy by introducing new biochemical functionality. This review will discuss the use of peptides as central design components in non‐viral gene delivery vectors. The contribution of the peptide component to the overall functionality of the delivery vehicle will be highlighted, with a focus on peptides as the only vehicle component or peptides in complex assemblies with lipids or polymers.  more » « less
Award ID(s):
1728858
PAR ID:
10452075
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Peptide Science
Volume:
113
Issue:
2
ISSN:
2475-8817
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cell penetrating peptides (CPPs), also known as protein transduction domains (PTDs), first identified ~25 years ago, are small, 6–30 amino acid long, synthetic, or naturally occurring peptides, able to carry variety of cargoes across the cellular membranes in an intact, functional form. Since their initial description and characterization, the field of cell penetrating peptides as vectors has exploded. The cargoes they can deliver range from other small peptides, full-length proteins, nucleic acids including RNA and DNA, liposomes, nanoparticles, and viral particles as well as radioisotopes and other fluorescent probes for imaging purposes. In this review, we will focus briefly on their history, classification system, and mechanism of transduction followed by a summary of the existing literature on use of CPPs as gene delivery vectors either in the form of modified viruses, plasmid DNA, small interfering RNA, oligonucleotides, full-length genes, DNA origami or peptide nucleic acids. 
    more » « less
  2. null (Ed.)
    Nonviral gene delivery (NVGD) is an appealing alternative to viral gene delivery for clinical applications due to its lower cost and increased safety. A variety of promising nonviral vectors are under development, including cationic polymers, lipids, lipid-polymer hybrids (LPHs) and inorganic nanoparticles. However, some NVGD strategies have disadvantages that have limited their adoption, including high toxicity and low efficiency. This review focuses on the most common NVGD vehicles with an emphasis on recent developments in the field. 
    more » « less
  3. From the first clinical trial by Dr. W.F. Anderson to the most recent US Food and Drug Administration–approved Luxturna (Spark Therapeutics, 2017) and Zolgensma (Novartis, 2019), gene therapy has revamped thinking and practice around cancer treatment and improved survival rates for adult and pediatric patients with genetic diseases. A major challenge to advancing gene therapies for a broader array of applications lies in safely delivering nucleic acids to their intended sites of action. Peptides offer unique potential to improve nucleic acid delivery based on their versatile and tunable interactions with biomolecules and cells. Cell-penetrating peptides and intracellular targeting peptides have received particular focus due to their promise for improving the delivery of gene therapies into cells. We highlight key examples of peptide-assisted, targeted gene delivery to cancer-specific signatures involved in tumor growth and subcellular organelle–targeting peptides, as well as emerging strategies to enhance peptide stability and bioavailability that will support long-term implementation. 
    more » « less
  4. Abstract Synthetic genetics is an area of synthetic biology that aims to extend the properties of heredity and evolution to artificial genetic polymers, commonly known as xeno‐nucleic acids or XNAs. In addition to establishing polymerases that are able to convert genetic information back and forth between DNA and XNA, efforts are underway to construct XNAs with expanded chemical functionality. α‐L‐Threose nucleic acid (TNA), a type of XNA that is recalcitrant to nuclease digestion and amenable to Darwinian evolution, provides a model system for developing XNAs with functional groups that are not present in natural DNA and RNA. Here, we describe the synthesis and polymerase activity of a cytidine TNA triphosphate analog (6‐phenyl‐pyrrolocytosine, tCpTP) that maintains Watson‐Crick base pairing with guanine. Polymerase‐mediated primer extension assays show that tCpTP is an efficient substrate for Kod‐RI, a DNA‐dependent TNA polymerase developed to explore the functional properties of TNA byin vitroselection. Fidelity studies reveal that a cycle of TNA synthesis and reverse transcription occurs with 99.9% overall fidelity when tCpTP and 7‐deaza‐tGTP are present as TNA substrates. This result expands the toolkit of TNA building blocks available forin vitroselection. 
    more » « less
  5. Abstract Nucleic acid delivery with mRNA lipid nanoparticles are being developed for targeting a wide array of tissues and cell types. However, targeted delivery to the bone microenvironment remains a significant challenge in the field, due in part to low local blood flow and poor interactions between drug carriers and bone material. Here we report bone‐targeting ionizable lipids incorporating a piperazine backbone and bisphosphate moieties, which bind tightly with hydroxyapatite ([Ca5(PO4)3OH]), a key component of mineralized tissues. These lipids demonstrate biocompatibility and low toxicity in both vitro and in vivo studies. LNP formulated with these lipids facilitated efficient cellular transfection and improved binding to hydroxyapatite in vitro, and targeted delivery to the bone microenvironment in vivo following systemic administration. Overall, our findings demonstrate the critical role of the piperazine backbone in a novel ionizable lipid, which incorporates a bisphosphonate group to enable efficient bone‐targeted delivery, highlighting the potential of rational design of ionizable lipids for next‐generation bone‐targeting delivery systems. 
    more » « less