skip to main content


Title: Multi‐population seedling and soil transplants show possible responses of a common tropical montane tree species ( Weinmannia bangii ) to climate change
Abstract

A possible response of many plant species to global warming is migration to higher elevations. However, these migrations may not be required if species can tolerate higher temperatures, or may be prevented if there are other factors such as changes in soil conditions that make upslope areas unsuitable.

We used a set of 3‐year field transplant experiments in the remote Peruvian Andes to simulate two possible responses of an abundant tropical montane cloudforest tree species (Weinmania bangii) to global warming: (a) ‘upward migration’, in which case seedlings ofW. bangii'swere grown at their current elevation/temperature but in soils transplanted from higher elevations and (b) ‘migration failure’, in which case seedlings were transplanted downslope along with their home soils into areas that are 1°C or 2°C warmer. We conducted separate experiments with populations from the upper/leading edge, middle and lower/trailing edges ofW. bangii'selevational/thermal range to assess the influence of local adaptation on responses to changes in temperature or soil.

We found that seedling survival and growth were not affected by changes in soil conditions, regardless of the origin population. However, seedling survival decreased with temperature. A simulated warming of 1°C caused a significant reduction in the survival of seedlings transplanted from the mid‐range population, and 2°C warming caused a severe decrease in the survival of seedlings transplanted from both the mid‐range and bottom‐edge populations.

Synthesis. Our findings reveal that rising temperatures are a serious threat to plants, especially in populations growing in the hotter portion of their species’ range. At least in the case ofW. bangii,novel soil conditions will not limit the establishment or growth of seedlings at higher elevations. As such, decreases in the survivorship at lower elevations may be offset through upward migrations as temperatures continue to increase.

 
more » « less
NSF-PAR ID:
10452083
Author(s) / Creator(s):
 ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Ecology
Volume:
109
Issue:
1
ISSN:
0022-0477
Page Range / eLocation ID:
p. 62-73
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Climate warming is expected to drive upward and poleward shifts at the leading edge of tree species ranges. Disturbance has the potential to accelerate these shifts by altering biotic and abiotic conditions, though this potential is likely to vary by disturbance type. In this study, we assessed whether recent wildfires and spruce beetle outbreaks promoted upward range expansion of trembling aspen.

    Location

    The San Juan Mountains of southern Colorado, USA (37°34′–37°50′N, 106°49′–107°21′W).

    Taxon

    Populus tremuloides.

    Methods

    We used aerial imagery to determine the upper elevational limit of adult aspen and conducted seedling surveys at and above this upper limit in burned and unburned areas, which had already incurred high canopy mortality due to spruce bark beetle (Dendroctonus rufipennis) outbreaks. We compared characteristics of burned versus unburned bark beetle‐killed sites and assessed microsite conditions related to aspen seedling establishment using generalized linear models and interaction indices.

    Results

    Aspen seedling establishment occurred upslope of its previous range within burns, but not in unburned areas, despite severe beetle‐driven canopy mortality across all sites before the fire. Aspen seedling establishment was associated more with the light and mineral soil created by fire than the presence of nearby seed sources. Aspen seedlings were associated with nurse objects such as logs and rocks at the highest elevations, where these objects may ameliorate a range of stressors associated with the high elevation range boundary.

    Main conclusions

    Not all disturbance types are equal in promoting tree species migrations at the leading edge. Range shifts can be highly localized, and microsites are important for driving local range expansions in transitional environments. The mosaic of future disturbances across the landscape will drive forest compositional shifts, depending on the disturbance types and the species they promote.

     
    more » « less
  2. Abstract

    Plant pathogens and herbivores can maintain forest diversity by reducing survival of tree seedlings close to conspecifics. However, how biogeographic variation in these natural enemies affects such distance‐dependent processes is unknown. Because invasive plants escape ecologically important enemies when introduced to a new range, distance‐dependent mortality may differ between their native and introduced ranges.

    Here, we test whether the invasive treeTriadica sebiferaescaped distance‐dependent mortality when introduced to the United States from China, and examine the roles of natural enemies in native and introduced ranges. In both the United States and China, we performed field surveys along with field and greenhouse experiments with field‐collected soils and soil sterilization treatments.

    In field surveys and the field experiment, insect damage onT. sebiferaseedlings decreased with distance to conspecific trees in the native range (China), but damage was low at all distances in the introduced range (United States). In the greenhouse experiment testing the effects of soil pathogens,T. sebiferaseedling mortality decreased with soil distance from conspecific trees in both ranges but distance‐independent mortality was higher in native range soils.

    Our findings indicate that both insect herbivores and the soil biota contribute to distance‐dependent effects onT. sebiferain its native range. They suggest, however, that plants may more readily escape herbivore than soil biota distance‐dependent effects when introduced to a new range and so herbivores, rather than soil pathogens, contribute more strongly to biogeographic variation in distance‐dependent effects. These results highlight the importance of considering species biogeographic variation in distance‐dependent effects and teasing apart the roles that different natural enemies play when studying species coexistence, community diversity and biological invasions.

     
    more » « less
  3. Abstract

    Predicting species' range shifts under future climate is a central goal of conservation ecology. Studying populations within and beyond multiple species' current ranges can help identify whether demographic responses to climate change exhibit directionality, indicative of range shifts, and whether responses are uniform across a suite of species.

    We quantified the demographic responses of six native perennial prairie species planted within and, for two species, beyond their northern range limits to a 3‐year experimental manipulation of temperature and precipitation at three sites spanning a latitudinal climate gradient in the Pacific Northwest, USA. We estimated population growth rates (λ) using integral projection models and tested for opposing responses to climate in different demographic vital rates (demographic compensation).

    Where species successfully established reproductive populations, warming negatively affectedλat sites within species' current ranges. Contrarily, warming and drought positively affectedλfor the two species planted beyond their northern range limits. Most species failed to establish a reproductive population at one or more sites within their current ranges, due to extremely low germination and seedling survival. We found little evidence of demographic compensation buffering populations to the climate treatments.

    Synthesis. These results support predictions across a suite of species that ranges will need to shift with climate change as populations within current ranges become increasingly vulnerable to decline. Species capable of dispersing beyond their leading edges may be more likely to persist, as our evidence suggests that projected changes in climate may benefit such populations. If species are unable to disperse to new habitat on their own, assisted migration may need to be considered to prevent the widespread loss of vulnerable species.

     
    more » « less
  4. Abstract

    Species distribution models predict shifts in forest habitat in response to warming temperatures associated with climate change, yet tree migration rates lag climate change, leading to misalignment of current species assemblages with future climate conditions. Forest adaptation strategies have been proposed to deliberately adjust species composition by planting climate‐suitable species. Practical evaluations of adaptation plantings are limited, especially in the context of ecological memory or extreme climate events.

    In this study, we examined the 3‐year survival and growth response of future climate‐adapted seedling transplants within operational‐scale silvicultural trials across temperate forests in the northeastern US. Nine species were selected for evaluation based on projected future importance under climate change and potential functional redundancy with species currently found in these ecosystems. We investigated how adaptation planting type (‘population enrichment’ vs. ‘assisted range expansion’) and local site conditions reinforce interference interactions with existing vegetation at filtering adaptation strategies focused on transitioning forest composition.

    Our results show the performance of seedling transplants is based on species (e.g. functional attributes and size), the strength of local competition (e.g. ecological memory) and adaptation planting type, a proxy for source distance. These findings were consistent across regional forests but modified by site‐specific conditions such as browse pressure and extreme climate events, namely drought and spring frost events.

    Synthesis and applications. Our results highlight that managing forests for shifts in future composition represents a promising adaptation strategy for incorporating new species and functional traits into contemporary forests. Yet, important barriers remain for the establishment of future climate‐adapted forests that will most likely require management intervention. Nonetheless, the broader applicability of our findings demonstrates the potential for adaptation plantings to serve as strategic source nodes for the establishment of future climate‐adapted species across functionally connected landscapes.

     
    more » « less
  5. Abstract

    Seedling emergence, survival, morphological and physiological traits, and oxidative stress resistance of southwestern white pine (Pinus strobiformisEngelm.) were studied in response to warming treatments applied during embryogenesis, germination, and early seedling growth. Daytime air temperature surrounding cones in tree canopies was warmed by +2.1°C during embryo development. Resulting seeds and seedlings were assigned to three thermal regimes in growth chambers, with each regime separated by 4°C to encompass the wide range of temperatures observed over space and time across the species’ range, plus the effect of heat waves coupled with a high carbon emissions scenario of climate warming. The embryo warming treatment reduced percent seedling emergence in all germination and growth environments and reduced mortality of seedlings grown in the warmest environment. Warm thermal regimes during early seedling growth increased subsequent seedling resistance to oxidative stress and transpirational water use. Experimental warming during seed development, germination, and seedling growth affected seedling emergence and survival. Oxidative stress resistance, morphology, and water relations were affected only by warming imposed during germination and seedling growth. This work explores potential outcomes of climate warming on multiple dimensions of seedling performance and uniquely illustrates that plant responses to heat vary with plant developmental stage in addition to the magnitude of temperature change.

     
    more » « less