skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using psychological science to support social distancing: Tradeoffs between affiliation and disease‐avoidance motivations
Abstract Humans are an intensely social species with a pervasive need for affiliation and social interaction. However, satisfying this fundamental motive comes with risk, including increased exposure to others' communicable pathogens. Consequently, disease mitigation strategies may require humans to downregulate their interest in socialization when pathogenic threat is elevated. Subsequent unsatisfactorily met affiliation needs can result in downregulation of disease avoidance goals in the service of social inclusion, albeit at the cost of putting individuals at greater risk for pathogen exposure. The current review summarizes past work in social and evolutionary psychology demonstrating affiliation and disease‐avoidance motivation tradeoffs. We then apply this research by articulating strategies to support and maintain social distancing behaviors in the face of loneliness, which is of particular importance during pandemic outbreaks such as COVID‐19. Finally, we propose novel and integrative research questions related to affiliation/pathogen‐avoidance tradeoffs.  more » « less
Award ID(s):
2030914
PAR ID:
10452115
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Social and Personality Psychology Compass
Volume:
15
Issue:
5
ISSN:
1751-9004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Barrett, Louise (Ed.)
    Abstract Direct pathogen and parasite transmission is fundamentally driven by a population’s contact network structure and its demographic composition and is further modulated by pathogen life-history traits. Importantly, populations are most often concurrently exposed to a suite of pathogens, which is rarely investigated, because contact networks are typically inferred from spatial proximity only. Here, we use 5 years of detailed observations of Indo-Pacific bottlenose dolphins (Tursiops aduncus) that distinguish between four different types of social contact. We investigate how demography (sex and age) affects these different social behaviors. Three of the four social behaviors can be used as a proxy for understanding key routes of direct pathogen transmission (sexual contact, skin contact, and aerosol contact of respiratory vapor above the water surface). We quantify the demography-dependent network connectedness, representing the risk of exposure associated with the three pathogen transmission routes, and quantify coexposure risks and relate them to individual sociability. Our results suggest demography-driven disease risk in bottlenose dolphins, with males at greater risk than females, and transmission route-dependent implications for different age classes. We hypothesize that male alliance formation and the divergent reproductive strategies in males and females drive the demography-dependent connectedness and, hence, exposure risk to pathogens. Our study provides evidence for the risk of coexposure to pathogens transmitted along different transmission routes and that they relate to individual sociability. Hence, our results highlight the importance of a multibehavioral approach for a more complete understanding of the overall pathogen transmission risk in animal populations, as well as the cumulative costs of sociality. 
    more » « less
  2. Animal sociality emerges from individual decisions on how to balance the costs and benefits of being sociable. Novel pathogens introduced into wildlife populations should increase the costs of sociality, selecting against gregariousness. Using an individual-based model that captures essential features of pathogen transmission among social hosts, we show how novel pathogen introduction provokes the rapid evolutionary emergence and coexistence of distinct social movement strategies. These strategies differ in how they trade the benefits of social information against the risk of infection. Overall, pathogen-risk-adapted populations move more and have fewer associations with other individuals than their pathogen-risk-naive ancestors, reducing disease spread. Host evolution to be less social can be sufficient to cause a pathogen to be eliminated from a population, which is followed by a rapid recovery in social tendency. Our conceptual model is broadly applicable to a wide range of potential host–pathogen introductions and offers initial predictions for the eco-evolutionary consequences of wildlife pathogen spillover scenarios and a template for the development of theory in the ecology and evolution of animals’ movement decisions. 
    more » « less
  3. Infectious hematopoietic necrosis virus (IHNV) and Flavobacterium psychrophilum are major pathogens of farmed rainbow trout. Improved control strategies are desired but the influence of on-farm environmental factors that lead to disease outbreaks remain poorly understood. Water reuse is an important environmental factor affecting disease. Prior studies have established a replicated outdoor-tank system capable of varying the exposure to reuse water by controlling water flow from commercial trout production raceways. The goal of this research was to evaluate the effect of constant or pulsed reuse water exposure on survival, pathogen prevalence, and pathogen load. Herein, we compared two commercial lines of rainbow trout, Clear Springs Food (CSF) and Troutex (Tx) that were either vaccinated against IHNV with a DNA vaccine or sham vaccinated. Over a 27-day experimental period in constant reuse water, all fish from both lines and treatments, died while mortality in control fish in spring water was <1%. Water reuse exposure, genetic line, vaccination, and the interaction between genetic line and water exposure affected survival ( P <0.05). Compared to all other water sources, fish exposed to constant reuse water had 46- to 710-fold greater risk of death ( P <0.0001). Tx fish had a 2.7-fold greater risk of death compared to CSF fish in constant reuse water ( P ≤ 0.001), while risk of death did not differ in spring water ( P =0.98). Sham-vaccinated fish had 2.1-fold greater risk of death compared to vaccinated fish ( P =0.02). Both IHNV prevalence and load were lower in vaccinated fish compared to sham-vaccinated fish, and unexpectedly, F. psychrophilum load associated with fin/gill tissues from live-sampled fish was lower in vaccinated fish compared to sham-vaccinated fish. As a result, up to forty-five percent of unvaccinated fish were naturally co-infected with F. psychrophilum and IHNV and the coinfected fish exhibited the highest IHNV loads. Under laboratory challenge conditions, co-infection with F. psychrophilum and IHNV overwhelmed IHNV vaccine-induced protection. In summary, we demonstrate that exposure to reuse water or multi-pathogen challenge can initiate complex disease dynamics that can overwhelm both vaccination and host genetic resistance. 
    more » « less
  4. Abstract Leptospirosis, the most widespread zoonotic disease in the world, is broadly understudied in multi-host wildlife systems. Knowledge gaps regardingLeptospiracirculation in wildlife, particularly in densely populated areas, contribute to frequent misdiagnoses in humans and domestic animals. We assessedLeptospiraprevalence levels and risk factors in five target wildlife species across the greater Los Angeles region: striped skunks (Mephitis mephitis), raccoons (Procyon lotor), coyotes (Canis latrans), Virginia opossums (Didelphis virginiana), and fox squirrels (Sciurus niger). We sampled more than 960 individual animals, including over 700 from target species in the greater Los Angeles region, and an additional 266 sampled opportunistically from other California regions and species. In the five target species seroprevalences ranged from 5 to 60%, and infection prevalences ranged from 0.8 to 15.2% in all except fox squirrels (0%).Leptospiraphylogenomics and patterns of serologic reactivity suggest that mainland terrestrial wildlife, particularly mesocarnivores, could be the source of repeated observed introductions ofLeptospirainto local marine and island ecosystems. Overall, we found evidence of widespreadLeptospiraexposure in wildlife across Los Angeles and surrounding regions. This indicates exposure risk for humans and domestic animals and highlights that this pathogen can circulate endemically in many wildlife species even in densely populated urban areas. 
    more » « less
  5. null (Ed.)
    Abstract Analyses of transient dynamics are critical to understanding infectious disease transmission and persistence. Identifying and predicting transients across scales, from within-host to community-level patterns, plays an important role in combating ongoing epidemics and mitigating the risk of future outbreaks. Moreover, greater emphases on non-asymptotic processes will enable timely evaluations of wildlife and human diseases and lead to improved surveillance efforts, preventive responses, and intervention strategies. Here, we explore the contributions of transient analyses in recent models spanning the fields of epidemiology, movement ecology, and parasitology. In addition to their roles in predicting epidemic patterns and endemic outbreaks, we explore transients in the contexts of pathogen transmission, resistance, and avoidance at various scales of the ecological hierarchy. Examples illustrate how (i) transient movement dynamics at the individual host level can modify opportunities for transmission events over time; (ii) within-host energetic processes often lead to transient dynamics in immunity, pathogen load, and transmission potential; (iii) transient connectivity between discrete populations in response to environmental factors and outbreak dynamics can affect disease spread across spatial networks; and (iv) increasing species richness in a community can provide transient protection to individuals against infection. Ultimately, we suggest that transient analyses offer deeper insights and raise new, interdisciplinary questions for disease research, consequently broadening the applications of dynamical models for outbreak preparedness and management. 
    more » « less