skip to main content


Title: Investigating the Nutrient Landscape in a Coastal Upwelling Region and Its Relationship to the Biological Carbon Pump
Abstract

We investigated nutrient patterns and their relationship to vertical carbon export using results from 38 Lagrangian experiments in the California Current Ecosystem. The dominant mode of variability reflected onshore‐offshore nutrient gradients. A secondary mode of variability was correlated with silica excess and dissolved iron and likely reflects regional patterns of iron limitation. The biological carbon pump was enhanced in high‐nutrient and Fe‐stressed regions. Patterns in the nutrient landscape proved to be better predictors of the vertical flux of sinking particles than contemporaneous measurements of net primary production. Our results suggest an important role for Fe‐stressed diatoms in vertical carbon flux. They also suggest that either preferential recycling of N or non‐Redfieldian nutrient uptake by diatoms may lead to high PO43−:NO3and Si(OH)4:NO3ratios, following export of P‐ and Si‐enriched organic matter. Increased export following Fe stress may partially explain inverse relationships between net primary productivity and export efficiency.

 
more » « less
Award ID(s):
1637632
NSF-PAR ID:
10452133
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
6
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Diatoms are major contributors to marine primary productivity and carbon export due to their rapid growth in high-nutrient environments and their heavy silica ballast. Their contributions are highly modified in high-nutrient low-chlorophyll regions due to the decoupling of upper-ocean silicon and carbon cycling caused by low iron (Fe). The Si cycle and the role of diatoms in the biological carbon pump was examined at Ocean Station Papa (OSP) in the HNLC region of the northeastern subarctic Pacific during the NASA EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field study. Sampling occurred during the annual minimum in surface silicic acid (Si(OH)4) concentration. Biogenic silica (bSi) concentrations were low, being in the tens of nanomolar range, despite high Si(OH)4 concentrations of about 15 μM. On average, the >5.0-µm particle size fraction dominated Si dynamics, accounting for 65% of bSi stocks and 81% of Si uptake compared to the small fraction (0.6–5.0 μm). Limitation of Si uptake was detected in the small, but not the large, size fraction. Growth rate in small diatoms was limited by Fe, while their Si uptake was restricted by Si(OH)4 concentration, whereas larger diatoms were only growth-limited by Fe. About a third of bSi production was exported out of the upper 100 m. The contribution of diatoms to carbon export (9–13%) was about twice their contribution to primary productivity (3–7%). The combination of low bSi production, low diatom primary productivity and high bSi export efficiency at OSP was more similar to the dynamics in the subtropical gyres than to other high-nutrient low-chlorophyll regions. 
    more » « less
  2. The contribution of diatoms to the production and export of organic carbon is highly modified in high-nutrient low-chlorophyll (HNLC) regions due to the decoupling of upper-ocean silicon and carbon cycling caused by low iron. The Si cycle and the role of diatoms in the biological carbon pump was examined at Ocean Station Papa (OSP) in the HNLC region of the northeastern subarctic Pacific during the NASA EX port Processes in the Ocean from RemoTe Sensing (EXPORTS) field study. Sampling occurred during the annual minimum in surface silicic acid concentration, [Si(OH)4 ]. Biogenic silica (bSi) concentrations were low being in the tens of nanomolar range despite high [Si(OH) 4 ], ~15 μM. On average the > 5.0 μm particle size fraction dominated Si dynamics accounting for 65% of bSi stocks and 81% of Si uptake compared to the small fraction (0.6 - 5.0 μm). Limitation of Si uptake was detected in the small, but not the large, size fraction. Small diatoms were co-limited with growth rate restricted by Fe and Si uptake restricted by [Si(OH) 4 ], whereas larger diatoms were only growth limited by Fe. About a third of silica production was exported out of the upper 100 m. The contribution of diatoms to carbon export (9 - 13%) was about twice their contribution to primary productivity (3 - 7%). The combination of low silica production, low diatom primary productivity and high bSi export efficiency at OSP was more similar to the dynamics in the subtropical gyres than to other HNLC regions. 
    more » « less
  3. Abstract

    Dissolved iron (dFe) plays an important role in regulating marine productivity. In high nutrient, low chlorophyll regions (>33% of the global ocean), iron is the primary growth limiting nutrient, and elsewhere iron can regulate nitrogen fixation by diazotrophs. The link between iron availability and carbon export is strongly dependent on the phytoplankton iron quotas or cellular Fe:C ratios. This ratio varies by more than an order of magnitude in the open ocean and is positively correlated with ambient dFe concentrations in field observations. Representing Fe:C ratios within models is necessary to investigate how ocean carbon cycling will interact with perturbations to iron cycling in a changing climate. The Community Earth System Model ocean component was modified to simulate dynamic, group‐specific, phytoplankton Fe:C that varies as a function of ambient iron concentration. The simulated Fe:C ratios improve the representation of the spatial trends in the observed Fe:C ratios. The acclimation of phytoplankton Fe:C ratios dampens the biogeochemical response to varying atmospheric deposition of soluble iron, compared to a fixed Fe:C ratio. However, varying atmospheric soluble iron supply has first order impacts on global carbon and nitrogen fluxes and on nutrient limitation spatial patterns. Our results suggest that pyrogenic Fe is a significant dFe source that rivals mineral dust inputs in some regions. Changes in dust flux and iron combustion sources (anthropogenic and wildfires) will modify atmospheric Fe inputs in the future. Accounting for dynamic phytoplankton iron quotas is critical for understanding ocean biogeochemistry and projecting its response to variations in atmospheric deposition.

     
    more » « less
  4. A nine-year time series of nutrient cation and anion concentration and efflux from three forested catchments in the Jemez River Basin Critical Zone Observatory (JRB-CZO) in northern New Mexico was used to quantify the pulse of chemical denudation resulting from varying levels stand-replacing wildfire intensity in May-June of 2013. The 3 years of pre-fire and 6 years of postfire data were also probed to shed light on the mechanisms underlying the pulsed release and the subsequent recovery. The initial large solute pulse released to the streams—K+, Ca2+, Mg2+, SO42-, Cl, dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and total dissolved nitrogen (TDN)—was caused by leaching of hillslope ash deposits during the first monsoon storms post-fire. Debris flow following the wildfire likely redistributed much of the ash-containing sediments along streams and valley bottoms. Sustained elevated solute concentrations observed in the surface waters throughout the post-fire period relative to pre-fire baselines is consistent with these soluble materials being periodically flushed from the soils during wet seasons, i.e., snowmelt and summer monsoons. As microbial mediated reactions and biotic uptake—due to plant regrowth—recover after fire, nutrient ion export (e.g., NO3-, Cland SO42-) steadily decreased toward the end of the post fire period, but remained above pre-fire levels, particularly for NO3-and SO42-. Surface water concentrations of polyvalent cations (e.g., Al and Fe) decreased significantly after the fire. Our observations suggest that changes in organic matter composition after fire (e.g., increased humification index—HIX) and the presence of pyrogenic carbon may not favor organo-metal complexation and transport. Finally, differences in burn severity among the three watersheds presented in this study, provide insights of the relative impact of solute exports and resilience. The catchments that experienced high burn severity exhibited greater solute fluxes than the less severely burn. Moreover, despite these differences, toward the end of the post-fire period these surface waters presented low and similar solute effluxes, indicating system recovery. Nonetheless, magnitudes and rebounds were solute and process specific. The results of this study highlight the importance of surface and near surface physical and biogeochemical processes on the long-lasting geochemical denudation of forested catchments following wildfires of varying intensities.

     
    more » « less
  5. Abstract

    The Marine Biogeochemistry Library (MARBL) is a prognostic ocean biogeochemistry model that simulates marine ecosystem dynamics and the coupled cycles of carbon, nitrogen, phosphorus, iron, silicon, and oxygen. MARBL is a component of the Community Earth System Model (CESM); it supports flexible ecosystem configuration of multiple phytoplankton and zooplankton functional types; it is also portable, designed to interface with multiple ocean circulation models. Here, we present scientific documentation of MARBL, describe its configuration in CESM2 experiments included in the Coupled Model Intercomparison Project version 6 (CMIP6), and evaluate its performance against a number of observational data sets. The model simulates present‐day air‐sea CO2flux and many aspects of the carbon cycle in good agreement with observations. However, the simulated integrated uptake of anthropogenic CO2is weak, which we link to poor thermocline ventilation, a feature evident in simulated chlorofluorocarbon distributions. This also contributes to larger‐than‐observed oxygen minimum zones. Moreover, radiocarbon distributions show that the simulated circulation in the deep North Pacific is extremely sluggish, yielding extensive oxygen depletion and nutrient trapping at depth. Surface macronutrient biases are generally positive at low latitudes and negative at high latitudes. CESM2 simulates globally integrated net primary production (NPP) of 48 Pg C yr−1and particulate export flux at 100 m of 7.1 Pg C yr−1. The impacts of climate change include an increase in globally integrated NPP, but substantial declines in the North Atlantic. Particulate export is projected to decline globally, attributable to decreasing export efficiency associated with changes in phytoplankton community composition.

     
    more » « less