skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Land‐Surface Diurnal Effects on the Asymmetric Structures of a Postlandfall Tropical Storm
Abstract After a tropical storm makes landfall, its vortex interacts with the surrounding environment and the underlying surface. It is expected that diurnal variation over land will affect storm structures. However, this has not yet been explored in previous studies. In this paper, numerical simulation of postlandfall Tropical Storm Bill (2015) is conducted using a research version of the NCEP Hurricane Weather Research and Forecasting (HWRF) model. Results indicate that during the storm's interaction with midlatitude westerlies over the Great Plains, the simulated storm with the SLAB land‐surface scheme is stronger, with faster eastward movement and attenuation, and more asymmetric structures than that with the NOAH land‐surface scheme. More symmetric structures correspond with a slower weakening and slower eastward movement of the storm over land. Further diagnoses suggest an obvious response of the storm's asymmetric structures to diurnal effects over land. Surface diabatic heating in the storm environment is important for the storm's symmetric structures and intensity over land. Specifically, during the transition from nighttime to daytime, the evident strengthening of convective instability, atmospheric baroclinicity, and the lateral advection of highair in the storm environment, associated with the rapid increase in surface diabatic heating, are conducive to the development of vertical vorticity and storm‐relative helicity, thus contributing to the maintenance of the storm's symmetric structures and intensity after landfall.  more » « less
Award ID(s):
1839833
PAR ID:
10452140
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
126
Issue:
1
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The sensitivity of the inland wind decay to realistic inland surface roughness lengths and soil moisture contents is evaluated for strong, idealized tropical cyclones (TCs) of category 4 strength making landfall. Results show that the relative sensitivities to roughness and moisture differ throughout the decay process, and are dependent on the strength and size of the vortex. First, within 12 h of landfall, intense winds at the surface decay rapidly in reaction to the sudden change in surface roughness and decreasing enthalpy fluxes. Wind speeds above the boundary layer decay at a slower rate. Differences in soil moisture contents minimally affect intensity during the first 12 h, as the enhancement of latent heat fluxes from high moisture contents is countered by enhanced surface cooling. After TCs decay to tropical storm intensities, weakening slows and the sensitivity of the intensity decay to soil moisture increases. Increased latent heating becomes significant enough to combat surface temperature cooling, resulting in enhanced convection outside of the expanding radius of maximum winds. This supports a slower decay. Additionally, the decay of the radial wind profile by quadrant is highly asymmetric, as the rear and left-of-motion quadrants decay the fastest. Increasing surface roughness accelerates the decay of the strongest winds, while increasing soil moisture slows the decay of the larger TC wind field. Results have implications for inland forecasting of TC winds and understanding the potential for damage. 
    more » « less
  2. Abstract Estimating the magnitude of tropical cyclone (TC) rainfall at different landfalling stages is an important aspect of the TC forecast that directly affects the level of response from emergency managers. In this study, a climatology of the TC rainfall magnitude as a function of the location of the TC centers within distance intervals from the coast and the percentage of the raining area over the land is presented on a global scale. A total of 1834 TCs in the period from 2000 until 2019 are analyzed using satellite information to characterize the precipitation magnitude, volumetric rain, rainfall area, and axial-symmetric properties within the proposed landfalling categories, with an emphasis on the postlandfall stages. We found that TCs experience rainfall maxima in regions adjacent to the coast when more than 50% of their rainfall area is over the water. TC rainfall is also analyzed over the entire TC extent and the portion over land. When the total extent is considered, rainfall intensity, volumetric rain, and rainfall area increase with wind speed intensity. However, once it is quantified over the land only, we found that rainfall intensity exhibits a nearly perfect inversely proportional relation with the increase in TC rainfall area. In addition, when a TC with life maximum intensity of a major hurricane makes landfall as a tropical depression or tropical storm, it usually produces the largest spatial extent and the highest volumetric rain. Significant StatementThis study aims to describe the cycle of tropical cyclone (TC) precipitation magnitude through a new approach that defines the landfall categories as a function of the percentage of the TC precipitating area over the land and ocean, along with the location of the TC centers within distance intervals from the coast. Our central hypothesis is that TC rainfall should exhibit distinct features in the long-term satellite time series for each of the proposed stages. We particularly focused on the overland events due to their effects on human activities, finding that the TCs that at some point of their life cycle reached major hurricane strength and made landfall as a tropical storm or tropical depression produced the highest volumetric rain over the land surface. This research also presents key observational evidence of the relationship between the rain rate, raining area, and volumetric rain for landfalling TCs. 
    more » « less
  3. Abstract Landfalling tropical cyclones (TCs) often decay rapidly due to a decrease in moisture and energy fluxes over land when compared to the ocean surface. Occasionally, however, these cyclones maintain intensity or reintensify over land. Post-landfall maintenance and intensification of TCs over land may be a result of fluxes of moisture and energy derived from anomalously wet soils. These soils act similarly to a warm sea surface, in a phenomenon coined the “Brown Ocean Effect.” Tropical Storm (TS) Bill (2015) made landfall over a region previously moistened by anomalously heavy rainfall and displayed periods of reintensification and maintenance over land. This study evaluates the role of the Brown Ocean Effect on the observed maintenance and intensification of TS Bill using a combination of existing and novel approaches, including the evaluation of precursor conditions at varying temporal scales and making use of composite backward trajectories. Comparisons were made to landfalling TCs with similar paths that did not undergo TC maintenance and/or intensification (TCMI) as well as to TS Erin (2007), a known TCMI case. We show that the antecedent environment prior to TS Bill was similar to other known TCMI cases, but drastically different from the non-TCMI cases analyzed in this study. Furthermore, we show that contributions of evapotranspiration to the overall water vapor budget were non-negligible prior to TCMI cases and that evapotranspiration along storm inflow was significantly (p<0.05) greater for TCMI cases than non-TCMI cases suggesting a potential upstream contribution from the land surface. 
    more » « less
  4. Abstract A hidden Markov model is developed to simulate tropical cyclone intensity evolution dependent on the surrounding large-scale environment. The model considers three unobserved (hidden) discrete states of storm intensity change and associates each state with a probability distribution of intensity change. The storm’s transit from one state to another is described as a Markov chain. Both the intensity change and state transit components of the model are dependent on environmental variables including potential intensity, vertical wind shear, relative humidity, and ocean feedback. This Markov Environment-Dependent Hurricane Intensity Model (MeHiM) is used to simulate the evolution of storm intensity along the storm track over the ocean, and a simple decay model is added to estimate the intensity change when the storm moves over land. Data for the North Atlantic (NA) basin from 1979 to 2014 (555 storms) are used for model development and evaluation. Probability distributions of 6- and 24-h intensity change, lifetime maximum intensity, and landfall intensity based on model simulations and observations compare well. Although the MeHiM is still limited in fully describing rapid intensification, it shows a significant improvement over previous statistical models (e.g., linear, nonlinear, and finite mixture models). 
    more » « less
  5. null (Ed.)
    Abstract Although global and regional dynamical models are used to predict the tracks and intensities of hurricanes over the ocean, these models are not currently used to predict the wind field and other impacts over land. This two-part study performs detailed evaluations of the near-surface, overland wind fields produced in simulations of Hurricane Wilma (2005) as it traveled across South Florida. This first part describes the production of two high-resolution simulations using the Weather Research and Forecasting (WRF) Model, using different boundary layer parameterizations available in WRF: the Mellor–Yamada–Janjić (MYJ) scheme and the Yonsei University (YSU) scheme. Initial conditions from the Global Forecasting System are manipulated with a vortex-bogusing technique to modify the initial intensity, size, and location of the cyclone. It is found possible through trial and error to successfully produce simulations using both the YSU and MYJ schemes that closely reproduce the track, intensity, and size of Wilma at landfall. For both schemes the storm size and structure also show good agreement with the wind fields diagnosed by H*WIND and the Tropical Cyclone Surface Wind Analysis. Both over water and over land, the YSU scheme has stronger winds over larger areas than does the MYJ, but the surface winds are more reduced in areas of greater surface roughness, particularly in urban areas. Both schemes produced very similar inflow angles over land and water. The overland wind fields are examined in more detail in the second part of this study. 
    more » « less