Compound drought and heatwave (CDHW) events have garnered increased attention due to their significant impacts on agriculture, energy, water resources, and ecosystems. We quantify the projected future shifts in CDHW characteristics (such as frequency, duration, and severity) due to continued anthropogenic warming relative to the baseline recent observed period (1982 to 2019). We combine weekly drought and heatwave information for 26 climate divisions across the globe, employing historical and projected model output from eight Coupled Model Intercomparison Project 6 GCMs and three Shared Socioeconomic Pathways. Statistically significant trends are revealed in the CDHW characteristics for both recent observed and model simulated future period (2020 to 2099). East Africa, North Australia, East North America, Central Asia, Central Europe, and Southeastern South America show the greatest increase in frequency through the late 21st century. The Southern Hemisphere displays a greater projected increase in CDHW occurrence, while the Northern Hemisphere displays a greater increase in CDHW severity. Regional warmings play a significant role in CDHW changes in most regions. These findings have implications for minimizing the impacts of extreme events and developing adaptation and mitigation policies to cope with increased risk on water, energy, and food sectors in critical geographical regions. 
                        more » 
                        « less   
                    
                            
                            Increase in Compound Drought and Heatwaves in a Warming World
                        
                    
    
            Abstract Compound drought and heatwaves can cause significant damage to the environment, economy, and society. In this study, we quantify the spatio‐temporal changes in compound drought and heatwave (CDHW) events by integrating weekly self‐calibrated Palmer Drought Severity Index (sc_PDSI) and daily maximum temperatures during the period 1983 to 2016. Multiple data products are used to examine the robustness of sc_PDSI in the compound event analysis. The results consistently suggest significant increases in drought‐related heatwaves and affected global land area in recent (warmer) periods. Several regions across the globe witnessed rise in CDHW frequency (one to three events/year), duration (2–10 days/year), and severity. This increasing pattern is spatially asymmetric, and greater amplification is observed across the Northern hemisphere due to recent warming. Furthermore, the background aridity influences the spatiotemporal evolution of CDHW events. The results can be applied to minimize the impacts of extreme CDHWs in critical geographical regions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1653841
- PAR ID:
- 10452150
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 48
- Issue:
- 1
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Compound drought and heatwave (CDHW) events have garnered much attention in recent studies. However, thus far, the identification of such events is oversimplified, and their association with natural climate variability is not fully explored. Here, we derive anomalies in the weekly self‐calibrated Palmer Drought Severity Index (sc_PDSI) and daily maximum temperatures to identify CDHW events from 1982 to 2016 over 26 climate regions across the globe. Using a Poisson Generalized Linear Model (GLM), we analyze yearly occurrences of seasonal CDHW events and their association with the warm and cold phases of El Nino Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North Atlantic Oscillation (NAO). ENSO exhibits robust association with CDHW events over the Southern Hemisphere during the austral summer and fall, while PDO influences their occurrences over the Western North America in the Northern Hemisphere during the boreal summer, which is supported by the composites of anomalies in the atmospheric circulations and surface energy budget. However, NAO association with CDHW events is relatively weak. The CDHW occurrence over other regions is driven by a combination of these large‐scale natural forcing. Our analyses also highlight that the cooccurrence of weekly to submonthly scale anomalies in the observed temperature and precipitation may not be always aligned between the observations and the reanalysis. Therefore, caution must be exercised while explaining such observed anomalies on the basis of reanalysis‐based circulations and surface energy budget. Overall, our analyses provide a new insight towards concurrent extremes and should help foster research efforts in this area.more » « less
- 
            Abstract The 2022 Compound Drought and Heatwave (CDHW) caused widespread crop damage, water shortages, and wildfires across Europe. Our study analyzed this event’s severity and return period (RP) and compared it with past mega CDHWs in Europe. The hardest‐hit areas were Iberian Peninsula, France, and Italy, where temperatures exceeded 2.5°C above normal, and severe droughts persisted from May to August. Using a Bayesian approach, we estimated the RP for the 2022 CDHW event, which was unprecedented in Northern Italy, Iberian Peninsula, and western parts of France, with RPs of 354, 420, and 280 years, respectively. The reduced soil moisture due to precipitation deficits and high temperatures contributed to the persistence and severity of drought, creating a positive feedback loop where dry soils led to even drier conditions. In light of our findings, it is evident that global warming poses increased risks of severe CDHW events, which are likely to increase.more » « less
- 
            Abstract Climate change is expected to increase the global occurrence and intensity of heatwaves, extreme precipitation, and flash droughts. However, it is not well understood how the compound heatwave, extreme precipitation, and flash drought events will likely change, and how global population, agriculture, and forest will likely be exposed to these compound events under future climate change scenarios. This research uses eight CMIP6 climate models to assess the current and future global compound climate extreme events, as well as population, agriculture, and forestry exposures to these events, under two climate scenarios, Shared Socioeconomic Pathways (SSP), SSP1‐2.6 and SSP5‐8.5 for three time periods: early‐, mid‐, and late‐ 21st century. Climate extremes are derived for heatwaves, extreme precipitation, and flash droughts using locational‐dependent thresholds. We find that compound heatwaves and flash drought events result in the largest increases in exposure of populations, agriculture, and forest lands, under SSP5‐8.5 late‐century projections of sequential heatwaves and flash droughts. Late‐century projections of sequential heatwaves and flash droughts show hot spots of exposure increases in population exposure greater than 50 million person‐events in China, India, and Europe; increases in agriculture land exposures greater than 90 thousand km2‐events in China, South America, and Oceania; and increase in forest land exposure greater than 120 thousand km2‐events in Oceania and South America regions when compared to the historical period. The findings from this study can be potentially useful for informing global climate adaptations.more » « less
- 
            Abstract Compound events (CEs) are attracting increased attention due to their significant societal and ecological impacts. However, their inherent complexity can pose challenges for climate scientists and practitioners, highlighting the need for a more approachable and intuitive framework for detecting and visualising CEs. Here, we introduce the Compound Events Toolbox and Dataset (CETD), which provides the first integrated, interactive, and extensible platform for CE detection and visualisation. Employing observations, reanalysis, and model simulations, CETD can quantify the frequency, duration, and severity of multiple CE types: multivariate, sequential, and concurrent events. It can analyse CEs often linked to severe impacts on human health, wildfires, and air pollution, such as hot-dry, wet-windy, and hot-dry-stagnation events. To validate the performance of CETD, we conduct statistical analyses for several high-impact events, such as the 2019 Australian wildfires and the 2022 European heatwaves. The accessibility and extensibility of CETD will benefit the broader community by enabling them to better understand and prepare for the risks and challenges posed by CEs in a warming world.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
