Abstract Compound drought and heatwaves can cause significant damage to the environment, economy, and society. In this study, we quantify the spatio‐temporal changes in compound drought and heatwave (CDHW) events by integrating weekly self‐calibrated Palmer Drought Severity Index (sc_PDSI) and daily maximum temperatures during the period 1983 to 2016. Multiple data products are used to examine the robustness of sc_PDSI in the compound event analysis. The results consistently suggest significant increases in drought‐related heatwaves and affected global land area in recent (warmer) periods. Several regions across the globe witnessed rise in CDHW frequency (one to three events/year), duration (2–10 days/year), and severity. This increasing pattern is spatially asymmetric, and greater amplification is observed across the Northern hemisphere due to recent warming. Furthermore, the background aridity influences the spatiotemporal evolution of CDHW events. The results can be applied to minimize the impacts of extreme CDHWs in critical geographical regions. 
                        more » 
                        « less   
                    
                            
                            How Unusual Is the 2022 European Compound Drought and Heatwave Event?
                        
                    
    
            Abstract The 2022 Compound Drought and Heatwave (CDHW) caused widespread crop damage, water shortages, and wildfires across Europe. Our study analyzed this event’s severity and return period (RP) and compared it with past mega CDHWs in Europe. The hardest‐hit areas were Iberian Peninsula, France, and Italy, where temperatures exceeded 2.5°C above normal, and severe droughts persisted from May to August. Using a Bayesian approach, we estimated the RP for the 2022 CDHW event, which was unprecedented in Northern Italy, Iberian Peninsula, and western parts of France, with RPs of 354, 420, and 280 years, respectively. The reduced soil moisture due to precipitation deficits and high temperatures contributed to the persistence and severity of drought, creating a positive feedback loop where dry soils led to even drier conditions. In light of our findings, it is evident that global warming poses increased risks of severe CDHW events, which are likely to increase. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10439636
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 15
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Compound drought and heatwave (CDHW) events have garnered increased attention due to their significant impacts on agriculture, energy, water resources, and ecosystems. We quantify the projected future shifts in CDHW characteristics (such as frequency, duration, and severity) due to continued anthropogenic warming relative to the baseline recent observed period (1982 to 2019). We combine weekly drought and heatwave information for 26 climate divisions across the globe, employing historical and projected model output from eight Coupled Model Intercomparison Project 6 GCMs and three Shared Socioeconomic Pathways. Statistically significant trends are revealed in the CDHW characteristics for both recent observed and model simulated future period (2020 to 2099). East Africa, North Australia, East North America, Central Asia, Central Europe, and Southeastern South America show the greatest increase in frequency through the late 21st century. The Southern Hemisphere displays a greater projected increase in CDHW occurrence, while the Northern Hemisphere displays a greater increase in CDHW severity. Regional warmings play a significant role in CDHW changes in most regions. These findings have implications for minimizing the impacts of extreme events and developing adaptation and mitigation policies to cope with increased risk on water, energy, and food sectors in critical geographical regions.more » « less
- 
            Abstract Compound drought and heatwave (CDHW) events have garnered much attention in recent studies. However, thus far, the identification of such events is oversimplified, and their association with natural climate variability is not fully explored. Here, we derive anomalies in the weekly self‐calibrated Palmer Drought Severity Index (sc_PDSI) and daily maximum temperatures to identify CDHW events from 1982 to 2016 over 26 climate regions across the globe. Using a Poisson Generalized Linear Model (GLM), we analyze yearly occurrences of seasonal CDHW events and their association with the warm and cold phases of El Nino Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North Atlantic Oscillation (NAO). ENSO exhibits robust association with CDHW events over the Southern Hemisphere during the austral summer and fall, while PDO influences their occurrences over the Western North America in the Northern Hemisphere during the boreal summer, which is supported by the composites of anomalies in the atmospheric circulations and surface energy budget. However, NAO association with CDHW events is relatively weak. The CDHW occurrence over other regions is driven by a combination of these large‐scale natural forcing. Our analyses also highlight that the cooccurrence of weekly to submonthly scale anomalies in the observed temperature and precipitation may not be always aligned between the observations and the reanalysis. Therefore, caution must be exercised while explaining such observed anomalies on the basis of reanalysis‐based circulations and surface energy budget. Overall, our analyses provide a new insight towards concurrent extremes and should help foster research efforts in this area.more » « less
- 
            Abstract. Forests in Europe experienced record-breaking dry conditions during the summer of 2022. The direction in which various forest types respond to climate extremes during their growing season is contingent upon an array of internal and external factors. These factors include the extent and severity of the extreme conditions and the tree ecophysiological characteristics adapted to environmental cues, which exhibit significant regional variations. In this study, we aimed to (1) quantify the extent and severity of the extreme soil and atmospheric dryness in 2022 in comparison to the two most extreme years in the past (2003 and 2018), (2) quantify the response of different forest types to atmospheric and soil dryness in terms of canopy browning and photosynthesis, and (3) relate the functional characteristics of the forests to the emerging responses observed remotely at the canopy level. For this purpose, we used spatial meteorological datasets between 2000 and 2022 to identify conditions with extreme soil and atmospheric dryness. We used the near-infrared reflectance of vegetation (NIRv), derived from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the global OCO-2 solar-induced fluorescence (GOSIF) as an observational proxy for ecosystem gross productivity to quantify the response of forests at the canopy level. In summer 2022, southern regions of Europe experienced exceptionally pronounced atmospheric and soil dryness. These extreme conditions resulted in a 30 % more widespread decline in GOSIF across forests compared to the drought of 2018 and 60 % more widespread decline compared to the drought of 2003. Although the atmospheric and soil drought scores were more extensive and severe (indicated by a larger observed maximum z score) in 2018 compared to 2022, the negative impact on forests, as indicated by declined GOSIF, was significantly larger in 2022. Different forest types were affected to varying degrees by the extreme conditions in 2022. Deciduous broadleaf forests were the most negatively impacted due to the extent and severity of the drought within their distribution range. In contrast, areas dominated by evergreen needleleaf forest (ENF) in northern Europe experienced a positive soil moisture (SM) anomaly and minimal negative vapour pressure deficit (VPD) in 2022. These conditions led to enhanced canopy greening and stronger solar-induced fluorescence (SIF) signals, benefiting from the warming. The higher degree of canopy damage in 2022, despite less extreme conditions, highlights the evident vulnerability of European forests to future droughts.more » « less
- 
            Anthropogenic climate change is expected to alter global hydrological regimes in the near future, resulting in significant changes to water availability. However, the magnitude of such changes will vary regionally. The Iberian Peninsula, and specifically Portugal, has been identified by climate model projections as an area where climate change will increase drought frequency and severity. Climate in the Iberian Peninsula is impacted by both internal and external climate modes, potentially producing different precipitation patterns within a small geographic region. Thus, the development of regional highly resolved paleoclimate records from Portugal is critical for improving the predictive capability of regional climate models under future warming scenarios and to determine the extent to which different teleconnection patterns are influencing hydroclimate. Here we present a near annually resolved stable carbon isotope (δ13C) and oxygen (δ18O) isotope time-series from three stalagmites from the Algarve region of southern Portugal from two caves within 2.3 km of each other. U/Th dating indicates that our composite record spans the last millennia continuously through 2019 CE. Two stalagmites (GIA-19-1 and C-18-1) stopped growing around 1550 CE, during a dry interval, and sample GIA-19-2 grew continuously since the 17th century. GIA-19-2, with sub-annual resolution, is compared to modern instrumental records to evaluate the influence of specific environmental controls, including temperature and precipitation amounts. Isotope data from all three stalagmites exhibit substantial multidecadal variability indicating relatively wet and dry intervals. Based on our initial results, it is likely that both temperature and precipitation amount effects are the dominant controls on isotopic variability in these stalagmites. Comparison of the GIA-19-2 oxygen isotope time-series with the instrumental record and reconstructed index of the East Atlantic (EA) pattern (1650 CE to present) shows strong coherence with a reconstructed EA index (1650-2018 CE) and an instrumental EA index (1950 to present). Hence, variability in Southern Portuguese hydroclimate associated with the EA mode should also be considered by policy makers planners as they prepare for future warming and associated water stresses.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
