skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High fidelity modeling of aerosol pathogen propagation in built environments with moving pedestrians
Abstract A high fidelity model for the propagation of pathogens via aerosols in the presence of moving pedestrians is proposed. The key idea is the tight coupling of computational fluid dynamics and computational crowd dynamics in order to capture the emission, transport and inhalation of pathogen loads in space and time. An example simulating pathogen propagation in a narrow corridor with moving pedestrians clearly shows the considerable effect that pedestrian motion has on airflow, and hence on pathogen propagation and potential infectivity.  more » « less
Award ID(s):
1818772 1913004
PAR ID:
10452153
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal for Numerical Methods in Biomedical Engineering
Volume:
37
Issue:
3
ISSN:
2040-7939
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Molecular dynamics is an N-body method wherein dynamic evolution of interacting atoms and molecules is computationally simulated. It is a popular computational method for studying the mechanical and thermal behavior of nanomaterials and nanocomposites. Social force models [1] of pedestrian evolution utilize the same numerical framework for evolving the trajectories of moving pedestrians. In this paper, we propose an integrated model that merges a social force based pedestrian dynamics theory with a stochastic infection transmission framework to evaluate the propagation of Ebola infection aboard an airplane. Air travel has been identified as a leading factor in the spread of many different viruses [2]. Pedestrian motion through airports and airplanes leads to susceptible passengers coming into contact with infected passengers and contagion with harmful consequences. The objective of this study is to evaluate the effects of pedestrian movement during air-travel on the spread of infectious diseases. We do so borrowing numerical methods like molecular dynamics and Monte Carlo analysis from the field of computational materials science. 
    more » « less
  2. Abstract There is a rich literature highlighting that pathogens are generally better adapted to infect local than novel hosts, and a separate seemingly contradictory literature indicating that novel pathogens pose the greatest threat to biodiversity and public health. Here, usingBatrachochytrium dendrobatidis, the fungus associated with worldwide amphibian declines, we test the hypothesis that there is enough variance in “novel” (quantified by geographic and phylogenetic distance) host‐pathogen outcomes to pose substantial risk of pathogen introductions despite local adaptation being common. Our continental‐scale common garden experiment and global‐scale meta‐analysis demonstrate that local amphibian‐fungal interactions result in higher pathogen prevalence, pathogen growth, and host mortality, but novel interactions led to variable consequences with especially virulent host‐pathogen combinations still occurring. Thus, while most pathogen introductions are benign, enough variance exists in novel host‐pathogen outcomes that moving organisms around the planet greatly increases the chance of pathogen introductions causing profound harm. 
    more » « less
  3. Recent statistics reveal an alarming increase in accidents involving pedestrians (especially children) crossing the street. A common philosophy of existing pedestrian detection approaches is that this task should be undertaken by the moving cars themselves. In sharp departure from this philosophy, we propose to enlist the help of cars parked along the sidewalk to detect and protect crossing pedestrians. In support of this goal, we propose ADOPT: a system for Alerting Drivers to Occluded Pedestrian Traffic. ADOPT lays the theoretical foundations of a system that uses parked cars to: (1) detect the presence of a group of crossing pedestrians – a crossing cohort; (2) predict the time the last member of the cohort takes to clear the street; (3) send alert messages to those approaching cars that may reach the crossing area while pedestrians are still in the street; and, (4) show how approaching cars can adjust their speed, given several simultaneous crossing locations. Importantly, in ADOPT all communications occur over very short distances and at very low power. Our extensive simulations using SUMO-generated pedestrian and car traffic have shown the effectiveness of ADOPT in detecting and protecting crossing pedestrians. 
    more » « less
  4. Buchler, Nicolas E (Ed.)
    ABSTRACT Infectious diseases remain a major cause of global mortality, yet basic questions concerning the relationship between within-host processes governing pathogen burden (pathogen replication, immune responses) and population-scale (epidemiological) patterns of mortality remain obscure. We use a structured literature review to leverage the extensive biomedical data generated by controlled host infections to address the epidemiological question of whether infection-induced mortality is constant, accelerating, or follows some other pattern of change and to infer the within-host mechanistic basis of this pattern. We show that across diverse lethal infection models, the risk of death increases approximately exponentially in time since infection, in a manner phenomenologically similar to the dynamics of all-cause death. We further show that this pattern of accelerating risk is consistent with multiple alternate mechanisms of pathogen growth and host-pathogen interaction, underlining the limitations of current experimental approaches to connect within-host processes to epidemiological patterns. We review critical experimental questions that our work highlights, requiring additional non-invasive data on pathogen burden throughout the course of infection.IMPORTANCEHere, we ask a simple question: what are the dynamics of pathogen-induced death? Death is a central phenotype in both biomedical and epidemiological infectious disease biology, yet very little work has attempted to link the biomedical focus on pathogen dynamics within a host and the epidemiological focus on populations of infected hosts. To systematically characterize the dynamics of death in controlled animal infections, we analyzed 209 data sets spanning diverse lethal animal infection models. Across experimental models, we find robust support for an accelerating risk of death since the time of infection, contrasting with conventional epidemiological models that assume a constant elevated risk of death. Using math models, we show that multiple processes of growth and virulence are consistent with accelerating risk of death, and we end with a discussion of critical experiments to resolve how within-host biomedical processes map onto epidemiological patterns of disease. 
    more » « less
  5. Fu, Feng (Ed.)
    When two streams of pedestrians cross at an angle, striped patterns spontaneously emerge as a result of local pedestrian interactions. This clear case of self-organized pattern formation remains to be elucidated. In counterflows, with a crossing angle of 180°, alternating lanes of traffic are commonly observed moving in opposite directions, whereas in crossing flows at an angle of 90°, diagonal stripes have been reported. Naka (1977) hypothesized that stripe orientation is perpendicular to the bisector of the crossing angle. However, studies of crossing flows at acute and obtuse angles remain underdeveloped. We tested the bisector hypothesis in experiments on small groups (18-19 participants each) crossing at seven angles (30° intervals), and analyzed the geometric properties of stripes. We present two novel computational methods for analyzing striped patterns in pedestrian data: (i) an edge-cutting algorithm, which detects the dynamic formation of stripes and allows us to measure local properties of individual stripes; and (ii) a pattern-matching technique, based on the Gabor function, which allows us to estimate global properties (orientation and wavelength) of the striped pattern at a time T . We find an invariant property: stripes in the two groups are parallel and perpendicular to the bisector at all crossing angles. In contrast, other properties depend on the crossing angle: stripe spacing (wavelength), stripe size (number of pedestrians per stripe), and crossing time all decrease as the crossing angle increases from 30° to 180°, whereas the number of stripes increases with crossing angle. We also observe that the width of individual stripes is dynamically squeezed as the two groups cross each other. The findings thus support the bisector hypothesis at a wide range of crossing angles, although the theoretical reasons for this invariant remain unclear. The present results provide empirical constraints on theoretical studies and computational models of crossing flows. 
    more » « less